year 16, Issue 2 (March - April 2022)                   Iran J Med Microbiol 2022, 16(2): 155-164 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Elkheloui R, Laktib A, Zanzan M, Mimouni R, Achemchem F, Aitalla A et al . Effects of Glucose and Temperature on Exopolysaccharides, Extracellular Matrix Proteins Production and Biofilm Formation of Carbapenem- Resistant Acinetobacter baumannii. Iran J Med Microbiol. 2022; 16 (2) :155-164
URL: http://ijmm.ir/article-1-1394-en.html
1- Laboratory of Microbial Biotechnology and Plants Protection, Department of biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
2- Bioprocess and Environment Team, LASIME laboratory, Agadir High School of Technology, Ibn Zohr University, Agadir, Morocco
3- Laboratory of Microbial Biotechnology and Plants Protection, Ibn Zohr University, Faculty of Sciences, Agadir-Morocco
4- Laboratory of Microbial Biotechnology and Plants Protection, Ibn Zohr University, Faculty of Sciences, Agadir-Morocco.
5- Laboratory of Microbial Biotechnology and Plants Protection, Department of biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco , f.hamadi@uiz.ac.ma
Abstract:   (588 Views)
Background & Aims: Acinetobacter baumannii is one of the most nosocomial pathogens as it can form biofilm on hospital surfaces. The objective of this work was to analyze the production of exopolysaccharides, extracellular proteins, and biofilm formation of carbapenem-resistant A. baumannii on silicone and ceramic surfaces.
Methods: Qualitative and quantitative tests were conducted to evaluate the production of exopolysaccharides in different culture conditions. The Biuret method was applied for protein determination. Furthermore, the count of viable cultivable cells was used to study biofilm formation. For physicochemical characterization, the surfaces were subjected to contact angle measurements.
Results: Incubation at 37°C with glucose (1.5%) was the optimal condition for producing exopolysaccharides. Glucose supplementation has also impacted the protein production by A. baumannii. Moreover, proteins were abundant in the extracellular matrix compared to exopolysaccharides (0.46 mg/mL for exopolysaccharides and 2.48 mg/mL for proteins). The strains formed biofilms on both surfaces but with different capacities, possibly due to the hydrophilic nature of ceramic and the hydrophobic nature of silicone. The addition of 1.5% glucose enhanced biofilm formation on ceramic for all strains. A positive correlation was established between the EPS concentration and the number of cells forming biofilm on silicone with 0.2% of glucose and between protein production and biofilm formed on ceramic with 0.2% and 1.5% of glucose. On the contrary, a negative correlation was detected between protein production and biofilm formation on the silicone surface with 0.2% glucose concentration.
Conclusion:  The environmental conditions significantly affect A. baumannii biofilm and its extracellular matrix compounds.
Full-Text [PDF 455 kb]   (170 Downloads) |   |   Full-Text (HTML)  (139 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2021/07/20 | Accepted: 2022/01/26 | ePublished: 2022/02/10

References
1. Fishbain J, Peleg AY. Treatment of Acinetobacter infections. Clin Infect Dis. 2010;51(1):79-84. [DOI:10.1086/653120] [PMID]
2. El-Shazly S, Dashti A, Vali L, Bolaris M, Ibrahim AS. Molecular epidemiology and characterization of multiple drug-resistant (MDR) clinical isolates of Acinetobacter baumannii. Int J Infect Dis. 2015;41:42-9. [DOI:10.1016/j.ijid.2015.10.016] [PMID] [PMCID]
3. Li P, Niu W, Li H, Lei H, Liu W, Zhao X, et al. Rapid detection of Acinetobacter baumannii and molecular epidemiology of carbapenem-resistant A. baumannii in two comprehensive hospitals of Beijing, China. Front Microbiol. 2015;6:997. [DOI:10.3389/fmicb.2015.00997] [PMID] [PMCID]
4. Wilks M, Wilson A, Warwick S, Price E, Kennedy D, Ely A, et al. Control of an outbreak of multidrug-resistant Acinetobacter baumannii-calcoaceticus colonization and infection in an intensive care unit (ICU) without closing the ICU or placing patients in isolation. Infect Control Hosp Epidemiol. 2006;27(7):654-8. [DOI:10.1086/507011] [PMID]
5. Morgan DJ, Liang SY, Smith CL, Johnson JK, Harris AD, Furuno JP, et al. Frequent multidrug-resistant Acinetobacter baumannii contamination of gloves, gowns, and hands of healthcare workers. Infect Control Hosp Epidemiol. 2010;31(7):716-21. [DOI:10.1086/653201] [PMID] [PMCID]
6. Cevahir N, Demir M, Kaleli I, Gurbuz M, Tikvesli S. Evaluation of biofilm production, gelatinase activity, and mannose-resistant hemagglutination in Acinetobacter baumannii strains. J Microbiol Immunol Infect. 2008;41(6):513-8.
7. Lee JC, Koerten H, van den Broek P, Beekhuizen H, Wolterbeek R, van den Barselaar M, et al. Adherence of Acinetobacter baumannii strains to human bronchial epithelial cells. Res Microbiol. 2006;157(4):360-6. [DOI:10.1016/j.resmic.2005.09.011] [PMID]
8. Antunes LC, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis. 2014;71(3):292-301. [DOI:10.1111/2049-632X.12125] [PMID]
9. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538-82. [DOI:10.1128/CMR.00058-07] [PMID] [PMCID]
10. Gordon NC, Wareham DW. Multidrug-resistant Acinetobacter baumannii: mechanisms of virulence and resistance. Int J Antimicrob Agents. 2010;35(3):219-26. [DOI:10.1016/j.ijantimicag.2009.10.024] [PMID]
11. Wu H, Moser C, Wang HZ, Hoiby N, Song ZJ. Strategies for combating bacterial biofilm infections. Int J Oral Sci. 2015;7(1):1-7. [DOI:10.1038/ijos.2014.65] [PMID] [PMCID]
12. Baselga R, Albizu I, Amorena B. Staphylococcus aureus capsule and slime as virulence factors in ruminant mastitis. A review. Vet Microbiol. 1994;39(3-4):195-204. [DOI:10.1016/0378-1135(94)90157-0]
13. MacKintosh EE, Patel JD, Marchant RE, Anderson JM. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. J Biomed Mater Res A. 2006;78(4):836-42. [DOI:10.1002/jbm.a.30905] [PMID]
14. Danese PN, Pratt LA, Kolter R. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol. 2000;182(12):3593-6. [DOI:10.1128/JB.182.12.3593-3596.2000] [PMID] [PMCID]
15. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science. 2002;295(5556):851-5. [DOI:10.1126/science.1067484] [PMID] [PMCID]
16. Dueholm MS, Petersen SV, Sonderkaer M, Larsen P, Christiansen G, Hein KL, et al. Functional amyloid in Pseudomonas. Mol Microbiol. 2010;77(4):1009-20. [DOI:10.1111/j.1365-2958.2010.07269.x] [PMID]
17. Taglialegna A, Lasa I, Valle J. Amyloid Structures as Biofilm Matrix Scaffolds. J Bacteriol. 2016;198(19):2579-88. [DOI:10.1128/JB.00122-16] [PMID] [PMCID]
18. Laktib A, Hassi M, Hamadi F, Mimouni R, Bourouache M, Bihadassen B, et al. Identification and antibiotic resistance of nosocomial bacteria isolated from the hospital environment of two intensive care units. Moroccan J Biol. 2018.
19. Smitinont T, Tansakul C, Tanasupawat S, Keeratipibul S, Navarini L, Bosco M, et al. Exopolysaccharide-producing lactic acid bacteria strains from traditional Thai fermented foods: isolation, identification and exopolysaccharide characterization. Int J Food Microbiol. 1999;51(2-3):105-11. [DOI:10.1016/S0168-1605(99)00094-X]
20. Chiba A, Sugimoto S, Sato F, Hori S, Mizunoe Y. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability. Microb Biotechnol. 2015;8(3):392-403. [DOI:10.1111/1751-7915.12155] [PMID] [PMCID]
21. Tiwari V, Tiwari D, Patel V, Tiwari M. Effect of secondary metabolite of Actinidia deliciosa on the biofilm and extra-cellular matrix components of Acinetobacter baumannii. Microb Pathog. 2017;110:345-51. [DOI:10.1016/j.micpath.2017.07.013] [PMID]
22. Mailafia S, Ajogi I, Nok A. Quantification of total soluble protein concentration in aeromonaspecies by spectrophotometric methods. Niger Vet J. 2009;30(1). [DOI:10.4314/nvj.v30i1.65163]
23. Van Oss CJ, Chaudhury MK, Good RJ. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chem Rev. 2002;88(6):927-41. [DOI:10.1021/cr00088a006]
24. Daddaoua A, Molina-Santiago C, de la Torre J, Krell T, Ramos JL. GtrS and GltR form a two-component system: the central role of 2-ketogluconate in the expression of exotoxin A and glucose catabolic enzymes in Pseudomonas aeruginosa. Nucleic Acids Res. 2014;42(12):7654-63. [DOI:10.1093/nar/gku496] [PMID] [PMCID]
25. Rossi E, Longo F, Barbagallo M, Peano C, Consolandi C, Pietrelli A, et al. Glucose availability enhances lipopolysaccharide production and immunogenicity in the opportunistic pathogen Acinetobacter baumannii. Future Microbiol. 2016;11(3):335-49. [DOI:10.2217/fmb.15.153] [PMID]
26. Joshi S, Koijam K. Exopolysaccharide production by a lactic acid bacteria, Leuconostoc lactis isolated from ethnically fermented beverage. Natl Acad Sci Lett. 2014;37(1):59-64. [DOI:10.1007/s40009-013-0203-6]
27. Jung JH, Choi NY, Lee SY. Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions. Food Microbiol. 2013;34(1):70-80. [DOI:10.1016/j.fm.2012.11.008] [PMID]
28. Junkins AD, Doyle MP. Demonstration of exopolysaccharide production by enterohemorrhagic Escherichia coli. Curr Microbiol. 1992;25(1):9-17. [DOI:10.1007/BF01570076] [PMID]
29. Gamar L, Blondeau K, Simonet J. Physiological approach to extracellular polysaccharide production by Lactobacillus rhamnosus strain C83. J Appl Microbiol. 2003;83(3):281-7. [DOI:10.1046/j.1365-2672.1997.00228.x]
30. Wu X, Al Farraj DA, Rajaselvam J, Alkufeidy RM, Vijayaraghavan P, Alkubaisi NA, et al. Characterization of biofilm formed by multidrug resistant Pseudomonas aeruginosa DC-17 isolated from dental caries. Saudi J Biol Sci. 2020;27(11):2955-60. [DOI:10.1016/j.sjbs.2020.07.020] [PMID] [PMCID]
31. Ivankovic T, Goic-Barisic I, Hrenovic J. Reduced susceptibility to disinfectants of Acinetobacter baumannii biofilms on glass and ceramic. Arh Hig Rada Toksikol. 2017;68(2):99-108. [DOI:10.1515/aiht-2017-68-2946] [PMID]
32. Mâ I, Hassaine H, Bellifa S, Lachachi M, Terki IK, Djeribi R. Biofilm formation by Acinetobacter baumannii isolated from medical devices at the intensive care unit of the University Hospital of Tlemcen (Algeria). Afr J Microbiol Res. 2014;8(3):270-6. [DOI:10.5897/AJMR2013.6288]
33. Lin MF, Lin YY, Lan CY. A method to assess influence of different medical tubing on biofilm formation by Acinetobacter baumannii. J Microbiol Methods. 2019;160:84-6. [DOI:10.1016/j.mimet.2019.03.023] [PMID]
34. Azelmad K, Hamadi F, Mimouni R, El boulani A, Amzil K, Latrache H. Physicochemical characterization of Pseudomonas aeruginosa isolated from catering substratum surface and investigation of their theoretical adhesion. Surfaces and Interfaces. 2018;12:26-30. [DOI:10.1016/j.surfin.2018.04.004]
35. Kempf M, Eveillard M, Deshayes C, Ghamrawi S, Lefrancois C, Georgeault S, et al. Cell surface properties of two differently virulent strains of Acinetobacter baumannii isolated from a patient. Can J Microbiol. 2012;58(3):311-7. [DOI:10.1139/w11-131] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc