year 15, Issue 5 (September - October 2021)                   Iran J Med Microbiol 2021, 15(5): 538-550 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kheradmand E, Razavi S, Talebi M, Jamshidian M. Evaluation of Shigella flexneri Biofilm Formation and Its Effect on the Expression of Toxin-antitoxin Genes. Iran J Med Microbiol 2021; 15 (5) :538-550
1- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
2- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran ,
3- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
4- Department of Pathobiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract:   (1824 Views)

Background and Objective: Shigella flexneri is a highly contagious Gram-negative bacterium that causes severe diarrhea, especially in children under ten years old. The biofilm formation in this species increases its resistance to antibiotics. Given the important role of toxin-antitoxin (TA) systems in the stability and survival of bacteria under stress condition, this study was aimed to evaluate the expression of genes encoding TA systems and Lon protease (lonp) as the main protein regulating the expression and function of these systems in this microorganism in terms of biofilm formation.
Materials and Methods: In this study, the standard Shigella flexneri ATCC 12022 was used. After the bacteria culture on the specific culture medium, the ability to form biofilm was quantitatively evaluated by microtiter plate method. Then, the expression level of the mentioned genes was assessed compared to the control group using real-time PCR.
Results: The results of microtiter plate test showed that the studied Shigella flexneri was a strong biofilm strain. The qPCR results showed an increase in gene expression of the studied toxins and Lon protease at 8 and 24 h following biofilm formation induction (P<0.01).
Conclusion: Due to the significant increase in the expression of the studied genes, especially Lon protease, GNAT and maz toxins at 24 h after biofilm formation, they can be potentially used as antimicrobial targets in new studies.

Full-Text [PDF 890 kb]   (476 Downloads) |   |   Full-Text (HTML)  (396 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2021/04/24 | Accepted: 2021/08/9 | ePublished: 2021/09/10

1. Baker S, The HC. Recent insights into Shigella: a major contributor to the global diarrhoeal disease burden. Curr Opin Infect Dis. 2018;31(5):449-54. [DOI:10.1097/QCO.0000000000000475] [PMID] [PMCID]
2. Schroeder NG, Hilbi H. Molecular Pathogenesis of Shigella spp.: Controlling Host Cell Signaling, Invasion, and Death by Type III Secretion. Clin Microbiol Rev. 2008;21(1):134-56. [DOI:10.1128/CMR.00032-07] [PMID] [PMCID]
3. Tajbakhsh M, García Migura L, Rahbar M, Svendsen CA, Mohammadzadeh M, Zali MR, et al. Antimicrobial-resistant Shigella infections from Iran: an overlooked problem? J Antimicrob Chemother. 2012;67(5):1128-33. [DOI:10.1093/jac/dks023] [PMID]
4. Xu D, Zhang W, Zhang B, Liao C, Shao Y. Characterization of a biofilm-forming Shigella flexneri phenotype due to deficiency in Hep biosynthesis. PeerJ. 2016;4:e2178. [DOI:10.7717/peerj.2178] [PMID] [PMCID]
5. Kang J, Liu L, Liu M, Wu X, Li J. Antibacterial activity of gallic acid against Shigella flexneri and its effect on biofilm formation by repressing mdoH gene expression. Food Control. 2018;94:147-54. [DOI:10.1016/j.foodcont.2018.07.011]
6. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322-32. [DOI:10.1016/j.ijantimicag.2009.12.011] [PMID]
7. Dadgar T, Vahedi Z, Yazdansetad S, Kiaei E, Asaadi H. Phenotypic Investigation of Biofilm Formation and the Prevalence of icaA and icaD Genes in Staphylococcus epidermidis Isolates. Iran J Med Microbiol. 2019;12(6):371-81. [DOI:10.30699/ijmm.12.6.371]
8. Nickerson KP, Chanin RB, Sistrunk JR, Rasko DA, Fink PJ, Barry EM, et al. Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to Bile Salts. Infect Immun. 2017;85(6):e0106716. [DOI:10.1128/IAI.01067-16] [PMID] [PMCID]
9. Ellafi A, Abdallah FB, Lagha R, Harbi B, Bakhrouf A. Biofilm production, adherence and morphological alterations of Shigella spp. under salt conditions. Ann Microbiol. 2011;61(4):741-7. [DOI:10.1007/s13213-010-0190-5]
10. Kang J, Liu L, Liu Y, Wang X. Ferulic Acid Inactivates Shigella flexneri through Cell Membrane Destruction, Biofilm Retardation, and Altered Gene Expression. J Agric Food Chem. 2020;68(27):7121-31. [DOI:10.1021/acs.jafc.0c01901] [PMID]
11. Yamaguchi Y, Park J-H, Inouye M. Toxin-Antitoxin Systems in Bacteria and Archaea. Annu Rev Genomics. 2011;45(1):61-79. [DOI:10.1146/annurev-genet-110410-132412] [PMID]
12. Goeders N, Van Melderen L. Toxin-Antitoxin Systems as Multilevel Interaction Systems. Toxins. 2014;6(1):304-24. [DOI:10.3390/toxins6010304] [PMID] [PMCID]
13. Yamaguchi Y, Inouye M. Chapter 12 mRNA Interferases, Sequence‐Specific Endoribonucleases from the Toxin-Antitoxin Systems. Progress in Molecular Biology and Translational Science. 85: Academic Press; 2009. p. 467-500. [DOI:10.1016/S0079-6603(08)00812-X]
14. Wen Y, Behiels E, Devreese B. Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis. 2014;70(3):240-9. [DOI:10.1111/2049-632X.12145] [PMID]
15. Karimi S, Ghafourian S, Taheri Kalani M, Azizi Jalilian F, Hemati S, Sadeghifard N. Association between toxin-antitoxin systems and biofilm formation. Jundishapur J Microbiol. 2014;8(1):e14540. [DOI:10.5812/jjm.14540] [PMID] [PMCID]
16. Christensen SK, Maenhaut-Michel G, Mine N, Gottesman S, Gerdes K, Van Melderen L. Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM-yoeB toxin-antitoxin system. Mol Microbiol. 2004;51(6):1705-17. [DOI:10.1046/j.1365-2958.2003.03941.x] [PMID]
17. Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK. Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim Biophys Acta Mol Cell Res. 2012;1823(1):56-66. [DOI:10.1016/j.bbamcr.2011.11.003] [PMID] [PMCID]
18. Kheradmand E, Razavi S, Talebi M, Jamshidian M. Evaluation of Putative Type II Toxin-Antitoxin Systems and Lon Protease Expression in Shigella flexneri Following Infection of Caco-2 Cells. Archives of Clinical Infectious Diseases. 2020;15(3):e98625. [DOI:10.5812/archcid.98625]
19. Hearn RP, Arblaster KE. DNA extraction techniques for use in education. Biochem Mol Biol Educ. 2010;38(3):161-6. [DOI:10.1002/bmb.20351] [PMID]
20. Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Cirković I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-9. [DOI:10.1111/j.1600-0463.2007.apm_630.x] [PMID]
21. Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, et al. The real-time polymerase chain reaction. Mol Aspects Med. 2006;27(2-3):95-125. [DOI:10.1016/j.mam.2005.12.007] [PMID]
22. Hemati S, Azizi-Jalilian F, Pakzad I, Taherikalani M, Maleki A, Karimi S, et al. The correlation between the presence of quorum sensing, toxin-antitoxin system genes and MIC values with ability of biofilm formation in clinical isolates of Pseudomonas aeruginosa. Iran J Microbiol. 2014;6(3):133-9.
23. Wood TL, Wood TK. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation. MicrobiologyOpen. 2016;5(3):499-511. [DOI:10.1002/mbo3.346] [PMID] [PMCID]
24. Valadbeigi H, Sadeghifard N, Salehi MB. Assessment of biofilm formation in Pseudomonas aeruginosa by antisense mazE-PNA. Microb Pathog. 2017;104:28-31. [DOI:10.1016/j.micpath.2017.01.009] [PMID]
25. Chan W, Domenech M, Moreno-Córdoba I, Navarro-Martínez V, Nieto C, Moscoso M, et al. The Streptococcus pneumoniae yefM-yoeB and relBE Toxin-Antitoxin Operons Participate in Oxidative Stress and Biofilm Formation. Toxins. 2018;10(9):378. [DOI:10.3390/toxins10090378] [PMID] [PMCID]
26. Alhusseini LB, Maleki A, Kouhsari E, Ghafourian S, Mahmoudi M, Al Marjani MF. Evaluation of type II toxin-antitoxin systems, antibiotic resistance, and biofilm production in clinical MDR Pseudomonas aeruginosa isolates in Iraq. Gene Rep. 2019;17:100546. [DOI:10.1016/j.genrep.2019.100546]
27. Ma D, Mandell JB, Donegan NP, Cheung AL, Ma W, Rothenberger S, et al. The Toxin-Antitoxin MazEF Drives Staphylococcus aureus Biofilm Formation, Antibiotic Tolerance, and Chronic Infection. mBio. 2019;10(6):e0165819. [DOI:10.1128/mBio.01658-19]
28. Søgaard-Andersen L, Yang Z. Programmed Cell Death: Role for MazF and MrpC in Myxococcus Multicellular Development. Curr Biol. 2008;18(8):R337-R9. [DOI:10.1016/j.cub.2008.02.060] [PMID]
29. Kwan BW, Lord DM, Peti W, Page R, Benedik MJ, Wood TK. The MqsR/MqsA toxin/antitoxin system protects Escherichia coli during bile acid stress. Environ Microbiol. 2015;17(9):3168-81. [DOI:10.1111/1462-2920.12749] [PMID]
30. Javanmard Z, Kalani BS, Razavi S, Farahani NN, Mohammadzadeh R, Javanmard F, et al. Evaluation of cell-penetrating peptide-peptide nucleic acid effect in the inhibition of cagA in Helicobacter pylori. Acta Microbiol Immunol Hung. 2020;67(1):66-72. [DOI:10.1556/030.66.2019.032] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc