year 15, Issue 1 (January & February 2021)                   Iran J Med Microbiol 2021, 15(1): 1-17 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parvizi P, Jalilian M, Parvizi H, Amiri S, Mohammad Doust H. The COVID-19 Pandemic: Data Analysis, Impacts and Future Considerations. Iran J Med Microbiol. 2021; 15 (1) :1-17
1- School of Engineering, University of Birmingham, Birmingham, United Kingdom
2- Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran ,
3- Science Department, The University of British Columbia, Vancouver, Canada
4- Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
5- Department of Physical Education, Tarbiat Modares University, Tehran, Iran
Abstract:   (954 Views)

The 2019 novel coronavirus is another type of known coronaviruses; SARS-CoV-1 and MERS-CoV. The World Health Organization (WHO) has named the virus SARS-CoV-2 and its disease as coronavirus disease 2019 (abbreviated COVID-19). The first case of COVID-19 was reported in December 2019 in Wuhan, China. The epidemiological studies have shown that the disease is transmitted from animal to human, and the spread of the disease from person to person is rapidly expanding. Currently, the most important factor in preventing and controlling the spread of the disease is proper recognition, health care, and control measures. Given the importance of early detection and timely treatment of the disease, the use of nanoscale materials for the production of sensors and drug delivery system can be of great assistance to the researchers. In this context, we aimed to explain the effects of the prevalence of the disease worldwide and consider the different aspects of SARS-CoV-2.

Full-Text [PDF 1175 kb]   (224 Downloads) |   |   Full-Text (HTML)  (73 Views)  
Type of Study: Review | Subject: Medical Virology
Received: 2020/10/7 | Accepted: 2020/12/1 | ePublished: 2021/01/10

1. Woo P, Lau S, Lam C, Lau C, Tsang A, Lau J, et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. Journal of virology. 2012;86(7):3995-4008. [DOI:10.1128/JVI.06540-11] [PMID] [PMCID]
2. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. Journal of Medical Virology.
3. Chen L, Liu W, Zhang Q, Xu K, Ye G, Wu W, et al. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerging Microbes & Infections. 2020;9(1):313-9. [DOI:10.1080/22221751.2020.1725399] [PMID] [PMCID]
4. World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. https://wwwwhoint/csr/sars/country/table2004_04_21/en/. 2020.
5. World Health Organization. MERS situation update January 2020. http://wwwemrowhoint/health-topics/mers-cov/mers-outbreakshtml. 2020.
6. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine. 2020. [DOI:10.1056/NEJMoa2001017] [PMID] [PMCID]
7. Chan JF-W, Kok K-H, Zhu Z, Chu H, To KK-W, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections. 2020;9(1):221-36. [DOI:10.1080/22221751.2020.1719902] [PMID] [PMCID]
8. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020:1-4.
9. Lam TT-Y, Shum MH-H, Zhu H-C, Tong Y-G, Ni X-B, Liao Y-S, et al. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv. 2020. [DOI:10.1101/2020.02.13.945485]
10. World Health Organization. Coronavirus disease (COVID-2019) situation reports https://wwwwhoint/emergencies/diseases/novel-coronavirus-2019/situation-reports/. 2020.
11. Wilder-Smith A, Chiew CJ, Lee VJ. Can we contain the COVID-19 outbreak with the same measures as for SARS? The Lancet Infectious Diseases. 2020. [DOI:10.1016/S1473-3099(20)30129-8]
12. Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet. 2020;395(10225):689-97. [DOI:10.1016/S0140-6736(20)30260-9]
13. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA. 2020. [DOI:10.1001/jama.2020.4683] [PMID]
14. Stafford N. Covid-19: Why Germany's case fatality rate seems so low. BMJ. 2020;369:m1395. [DOI:10.1136/bmj.m1395] [PMID]
15. Roser M, Ritchie H, Ortiz-Ospina E. Coronavirus Disease (COVID-19)-Statistics and Research. Our World in Data. 2020.
16. Marston HD, Folkers GK, Morens DM, Fauci AS. Emerging viral diseases: confronting threats with new technologies. Science Translational Medicine. 2014;6(253):253ps10-ps10. [DOI:10.1126/scitranslmed.3009872] [PMID]
17. Gates B. The Next Epidemic - Lessons from Ebola. New England Journal of Medicine. 2015;372(15):1381-4. [DOI:10.1056/NEJMp1502918] [PMID]
18. World Health Organization. Marburg virus disease (15 February 2018). https://wwwwhoint/news-room/fact-sheets/detail/marburg-virus-disease. 2018.
19. World Health Organization. Ebola virus disease (10 February 2020). https://wwwwhoint/news-room/fact-sheets/detail/ebola-virus-disease. 2020.
20. Centers for Disease Control and Prevention. Hendra Virus Disease (HeV) (March 17, 2014). https://wwwcdcgov/vhf/hendra/indexhtml. 2014.
21. Centers for Disease Control and Prevention. The burden of the influenza A H1N1pdm09 virus since the 2009 pandemic. https://wwwcdcgov/flu/pandemic-resources/burden-of-h1n1html. 2019.
22. Novel CPERE. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi. 2020;41(2):145. [DOI:10.46234/ccdcw2020.032]
23. Heymann DL, Shindo N. COVID-19: what is next for public health? The Lancet. 2020. [DOI:10.1016/S0140-6736(20)30374-3]
24. World Health Organization. Update 49 - SARS case fatality ratio, incubation period (7 May 2003). https://wwwwhoint/csr/sarsarchive/2003_05_07a/en/. 2003.
25. Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, et al. Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 2020;12(2):244. [DOI:10.3390/v12020244] [PMID] [PMCID]
26. World Health Organization. Middle East respiratory syndrome coronaviurs (MERS-CoV) fact sheet. https://wwwwhoint/en/news-room/fact-sheets/detail/middle-eastrespiratory-syndrome-coronavirus-(mers-cov).
27. Virlogeux V, Fang VJ, Park M, Wu JT, Cowling BJ. Comparison of incubation period distribution of human infections with MERS-CoV in South Korea and Saudi Arabia. Scientific reports. 2016;6:35839. [DOI:10.1038/srep35839] [PMID] [PMCID]
28. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497-506. [DOI:10.1016/S0140-6736(20)30183-5]
29. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical characteristics of 2019 novel coronavirus infection in China. MedRxiv. 2020. [DOI:10.1101/2020.02.06.20020974]
30. Jian-ya G. Clinical characteristics of 51 patients discharged from hospital with COVID-19 in Chongqing, China. medRxiv. 2020.
31. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507-13. [DOI:10.1016/S0140-6736(20)30211-7]
32. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. Jama. 2020. [DOI:10.1001/jama.2020.1585] [PMID] [PMCID]
33. Zhang Jj, Dong X, Cao YY, Yuan Yd, Yang Yb, Yan Yq, et al. Clinical characteristics of 140 patients infected by SARS‐CoV‐2 in Wuhan, China. Allergy. 2020. [DOI:10.1111/all.14238] [PMID]
34. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clinical Infectious Diseases. 2020. [DOI:10.1093/cid/ciaa272] [PMID] [PMCID]
35. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine. 2020. [DOI:10.1101/2020.03.09.20033217]
36. World Health Organization. Updated WHO advice for international traffic in relation to the outbreak of the novel coronavirus 2019-nCoV (24 January 2020). https://wwwwhoint/ith/2020-24-01-outbreak-of-Pneumonia-caused-by-new-coronavirus/en/. 2020.
37. Xiang Y-T, Yang Y, Li W, Zhang L, Zhang Q, Cheung T, et al. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. The Lancet Psychiatry. 2020;7(3):228-9. [DOI:10.1016/S2215-0366(20)30046-8]
38. Gostin LO, Wiley LF. Governmental Public Health Powers During the COVID-19 Pandemic: Stay-at-home Orders, Business Closures, and Travel Restrictions. JAMA. 2020. [DOI:10.1001/jama.2020.5460] [PMID]
39. Marketon JIW, Glaser R. Stress hormones and immune function. Cellular immunology. 2008;252(1-2):16-26. [DOI:10.1016/j.cellimm.2007.09.006] [PMID]
40. Godbout JP, Glaser R. Stress-induced immune dysregulation: implications for wound healing, infectious disease and cancer. Journal of Neuroimmune Pharmacology. 2006;1(4):421-7. [DOI:10.1007/s11481-006-9036-0] [PMID]
41. Chandra RK. Nutrition and the immune system from birth to old age. European journal of clinical nutrition. 2002;56(3):S73-S6. [DOI:10.1038/sj.ejcn.1601492] [PMID]
42. Calder PC, Kew S. The immune system: a target for functional foods? British Journal of Nutrition. 2002;88(S2):S165-S76. [DOI:10.1079/BJN2002682] [PMID]
43. Marcos A, Nova E, Montero A. Changes in the immune system are conditioned by nutrition. European journal of clinical nutrition. 2003;57(1):S66-S9. [DOI:10.1038/sj.ejcn.1601819] [PMID]
44. De la Fuente M. Effects of antioxidants on immune system ageing. European Journal of Clinical Nutrition. 2002;56(3):S5-S8. [DOI:10.1038/sj.ejcn.1601476] [PMID]
45. De Flora S, Grassi C, Carati L. Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment. European Respiratory Journal. 1997;10(7):1535-41. [DOI:10.1183/09031936.97.10071535] [PMID]
46. Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus research. 2008;131(2):111-20. [DOI:10.1016/j.virusres.2007.09.008] [PMID] [PMCID]
47. Lin C-W, Tsai F-J, Tsai C-H, Lai C-C, Wan L, Ho T-Y, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral research. 2005;68(1):36-42. [DOI:10.1016/j.antiviral.2005.07.002] [PMID] [PMCID]
48. Ryu YB, Jeong HJ, Kim JH, Kim YM, Park J-Y, Kim D, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic & medicinal chemistry. 2010;18(22):7940-7. [DOI:10.1016/j.bmc.2010.09.035] [PMID] [PMCID]
49. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience trends. 2020. [DOI:10.5582/bst.2020.01020] [PMID]
50. Li G, De Clercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Publishing Group; 2020. [DOI:10.1038/d41573-020-00016-0] [PMID]
51. Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Research. 2020:104762. [DOI:10.1016/j.antiviral.2020.104762] [PMID] [PMCID]
52. Colson P, Rolain J-M, Lagier J-C, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020;105932. [DOI:10.1016/j.ijantimicag.2020.105932] [PMID] [PMCID]
53. Monteil V, Kwon H, Prado P, Hagelkrüys A, Wimmer RA, Stahl M, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2.
54. Wang J, Tang K, Feng K, Lv W. High Temperature and High Humidity Reduce the Transmission of COVID-19. Available at SSRN 3551767. 2020. [DOI:10.2139/ssrn.3551767]
55. Oliveiros B, Caramelo L, Ferreira NC, Caramelo F. Role of temperature and humidity in the modulation of the doubling time of COVID-19 cases. medRxiv. 2020:2020.03.05.20031872. [DOI:10.1101/2020.03.05.20031872] [PMCID]
56. Wang L, Crameri G. Emerging zoonotic viral diseases. Rev sci tech Off int Epiz. 2014;33(569-81). [DOI:10.20506/rst.33.2.2311] [PMID]
57. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. https://wwwwhoint/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. 2020.
58. Holloway R, Rasmussen SA, Zaza S, Cox NJ, Jernigan DB, Workgroup IPF. Updated preparedness and response framework for influenza pandemics. Morbidity and Mortality Weekly Report: Recommendations and Reports. 2014;63(6):1-18.
59. Centers for Disease Control and Prevention. Pandemic Preparedness Resources. https://wwwcdcgov/coronavirus/2019-ncov/php/pandemic-preparedness-resourceshtml. 2016.
60. Organization WH. Key planning recommendations for Mass Gatherings in the context of COVID-19: interim guidance, 19 March 2020. World Health Organization; 2020.
61. Keogh-Brown MR, Smith RD. The economic impact of SARS: how does the reality match the predictions? Health policy. 2008;88(1):110-20. [DOI:10.1016/j.healthpol.2008.03.003] [PMID] [PMCID]
62. Smith RD, Keogh-Brown MR, Barnett T, Tait J. The economy-wide impact of pandemic influenza on the UK: a computable general equilibrium modelling experiment. Bmj. 2009;339:b4571. [DOI:10.1136/bmj.b4571] [PMID] [PMCID]
63. Centers for Disease Control Prevention. Cost of the ebola epidemic. CDC website Updated August. 2016;8.
64. McKibbin WJ, Fernando R. The global macroeconomic impacts of COVID-19: Seven scenarios. 2020. [DOI:10.2139/ssrn.3547729]
65. Wang X, Liu L-H, Ramstroem O, Yan M. Engineering nanomaterial surfaces for biomedical applications. Experimental Biology and Medicine. 2009;234(10):1128-39. [DOI:10.3181/0904-MR-134] [PMID] [PMCID]
66. Larguinho M, Baptista PV. Gold and silver nanoparticles for clinical diagnostics-from genomics to proteomics. Journal of proteomics. 2012;75(10):2811-23. [DOI:10.1016/j.jprot.2011.11.007] [PMID]
67. Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, Hejazi M, Gharaatifar N, Hasanzadeh M, et al. Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends in Analytical Chemistry. 2017;97:445-57. [DOI:10.1016/j.trac.2017.10.005] [PMID] [PMCID]
68. Draz MS, Shafiee H. Applications of gold nanoparticles in virus detection. Theranostics. 2018;8(7):1985. [DOI:10.7150/thno.23856] [PMID] [PMCID]
69. Huang X, Li M, Xu Y, Zhang J, Meng X, An X, et al. Novel Gold Nanorod-Based HR1 Peptide Inhibitor for Middle East Respiratory Syndrome Coronavirus. ACS applied materials & interfaces. 2019;11(22):19799-807. [DOI:10.1021/acsami.9b04240] [PMID]
70. Hu TY, Frieman M, Wolfram J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nature Nanotechnology. 2020:1-3. [DOI:10.1038/s41565-020-0674-9] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2021 All Rights Reserved | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc