year 14, Issue 3 (May - Jun 2020)                   Iran J Med Microbiol 2020, 14(3): 213-226 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soltani M S, Eftekhar F, Shahcheraghi F, Noofeli M, Banihashemi S R. Extraction of Outer membrane Vesicles from Vaccinal Strain of Bordetella Pertussis as the First Step of a Vaccine Candidate Study Against Pertussis Infection. Iran J Med Microbiol 2020; 14 (3) :213-226
URL: http://ijmm.ir/article-1-1079-en.html
1- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
2- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran , f-eftekhar@sbu.ac.ir
3- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
4- Razi Vaccine and Serum Research Institute, Agricultural research, Education and Extension Organization (AREEO), Karaj, Iran
5- Department of Immunology, Razi Vaccine and Serum Research Institute, Agricultural research, Education and Extention organization(AREEO), Karaj, Iran
Abstract:   (4484 Views)

Background: Pertussis is still one of the major public health problems. The increase of the disease emerged in recent decades due to the replacement of the reactogenic whole cell vaccine with the safer acellular vaccine and the genetic diversity of the bacterium. As outer membrane vesicles (OMVs) obtained from Bordetella pertussis contains surface immunogenic antigen in its structure, it has an acceptable characteristic that could be considered as a good candidate for pertussis vaccine.
Materials & Methods: Vaccinal strain BP134 strain of B. pertussis was cultured under standard conditions and OMVs were isolated by modifying the method without the use of ultracentrifuge. The isolated vesicles were examined by transmission electron microscopy and protein content was measured by the Bradford method. The expression of virulence factors was confirmed by SDS-PAGE and protein expression was confirmed by Western immunoblot. Pyrogenicity test and abnormal toxicity test were performed on extracted vesicles.
Results: The morphology of the vesicles was confirmed in the range of 40 to 200 nm. The protein concentration of the extracted vesicles was determined as 600 μg. Expression analysis by SDS-PAGE and western blot confirmed the presence of virulence factors, pertussis toxin, filamentous hemagglutinin, and pertactin using monoclonal antibodies in OMVs of the vaccinal strain. Pyrogenicity test and abnormal toxicity test were negative.
Conclusion: The proposed method is a simple and efficient method for isolation of the B. pertussis OMVs. The OMVs extracted from B. pertussis could be a candidate for a new generation of pertussis vaccine alone or in combination with adjuvants to design future acellular vaccines.

Full-Text [PDF 849 kb]   (1780 Downloads) |   |   Full-Text (HTML)  (1238 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2020/03/21 | Accepted: 2020/06/16 | ePublished: 2020/05/12

References
1. Kerr J, Matthews R. Bordetella pertussis infection: pathogenesis, diagnosis, management, and the role of protective immunity. European Journal of Clinical Microbiology and Infectious Diseases. 2000;19(2):77-88. [DOI:10.1007/s100960050435] [PMID]
2. Edwards KM. Overview of pertussis: focus on epidemiology, sources of infection, and long term protection after infant vaccination. The Pediatric Infectious Disease Journal. 2005;24(6): 104-8. [DOI:10.1097/01.inf.0000166154.47013.47] [PMID]
3. Warfel JM, Edwards KM. Pertussis vaccines and the challenge of inducing durable immunity. Current Opinion in Immunology. 2015;35:48-54. [DOI:10.1016/j.coi.2015.05.008] [PMID]
4. Willems RJ, Mooi FR. From whole cell to acellular pertussis vaccines. Reviews in Medical Microbiology. 1996;7(1):13-22. [DOI:10.1097/00013542-199601000-00002]
5. Lugauer S, Heininger U, Cherry JD, Stehr K. Long-term clinical effectiveness of an acellular pertussis component vaccine and a whole cell pertussis component vaccine. European Journal of Pediatrics. 2002;161(3):142-6. [DOI:10.1007/s00431-001-0893-5] [PMID]
6. Denoël P, Godfroid F, Guiso N, Hallander H, Poolman J. Comparison of acellular pertussis vaccines-induced immunity against infection due to Bordetellapertussis variant isolates in a mouse model. Vaccine. 2005;23(46-47):5333-41. [DOI:10.1016/j.vaccine.2005.06.021] [PMID]
7. Mooi FR, He Q, Guiso N. Phylogeny, evolution, and epidemiology of Bordetellae. Bordetella Molecular Microbiology. 2007:17-45.
8. Sealey KL, Belcher T, Preston A. Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infection, Genetics and Evolution. 2016;40:136-43. [DOI:10.1016/j.meegid.2016.02.032] [PMID]
9. Safarchi A, Octavia S, Nikbin VS, Lotfi MN, Zahraei SM, Tay CY, et al. Genomic epidemiology of Iranian Bordetella pertussis: 50 years after the implementation of whole cell vaccine. Emerging Microbes & Infections. 2019;8(1):1416-27. [DOI:10.1080/22221751.2019.1665479] [PMID] [PMCID]
10. Mooi F, Van Der Maas N, De Melker H. Pertussis resurgence: waning immunity and pathogen adaptation-two sides of the same coin. Epidemiology and Infection. 2014;142(04):685-94. [DOI:10.1017/S0950268813000071] [PMID]
11. Mooi FR, Van Loo I, Gent Mv, He Q, Bart MJ, Heuvelman KJ, et al. Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerging Infectious Diseases. 2009;15(8):1206-13. [DOI:10.3201/eid1508.081511] [PMID] [PMCID]
12. Roberts R, Moreno G, Bottero D, Gaillard ME, Fingermann M, Graieb A, et al. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine. 2008;26(36):4639-46. [DOI:10.1016/j.vaccine.2008.07.004] [PMID]
13. Ünal CM, Schaar V, Riesbeck K. Bacterial outer membrane vesicles in disease and preventive medicine. Seminars in Immunopathology. 2011;33(5):395-408. [DOI:10.1007/s00281-010-0231-y] [PMID]
14. Fernández S, Fajardo EM, Mandiarote A, Padrón MA, Acosta M, Cabrera RA, et al. A proteoliposome formulation derived from Bordetella pertussis induces protection in two murine challenge models. BMC Immunology. 2013;14(1):1-4. [DOI:10.1186/1471-2172-14-S1-S8] [PMID] [PMCID]
15. Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annual Review of Microbiology. 2010;64:163-84. [DOI:10.1146/annurev.micro.091208.073413] [PMID] [PMCID]
16. Hozbor D, Rodriguez M, Fernandez J, Lagares A, Guiso N, Yantorno OJC. Release of outer membrane vesicles from Bordetella pertussis. Current Microbiology. 1999;38(5):273-8. [DOI:10.1007/PL00006801] [PMID]
17. Stainer D, Scholte M. A simple chemically defined medium for the production of phase I Bordetella pertussis. Microbiology. 1970;63(2):211-20. [DOI:10.1099/00221287-63-2-211] [PMID]
18. Ormazábal M, Bartel E, Gaillard ME, Bottero D, Errea A, Zurita ME, et al. Characterization of the key antigenic components of pertussis vaccine based on outer membrane vesicles. Vaccine. 2014;32(46):6084-90. [DOI:10.1016/j.vaccine.2014.08.084] [PMID]
19. Ernst O, Zor T. Linearization of the Bradford protein assay. Journal of Visualized Experiment. 2010;38:1-6. [DOI:10.3791/1918] [PMID] [PMCID]
20. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-5. [DOI:10.1038/227680a0] [PMID]
21. Roberts R, Moreno G, Bottero D, Gaillard ME, Fingermann M, Graieb A, et al. Outer membrane vesicles as acellular vaccine against pertussis. Vaccine. 2008;26:4639-46. [DOI:10.1016/j.vaccine.2008.07.004] [PMID]
22. Vipond C, Findlay L, Feavers I, Care R. Limitations of the rabbit pyrogen test for assessing meningococcal OMV based vaccines. ALTEX-Alternatives to Animal Experimentation. 2016;33(1):47-53. [DOI:10.14573/altex.1509291] [PMID]
23. Wilk MM, Borkner L, Misiak A, Curham L, Allen AC, Mills KH. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerging microbes and infections. 2019;8(1):169-85. [DOI:10.1080/22221751.2018.1564630] [PMID] [PMCID]
24. Locht C. Pertussis: acellular, whole-cell, new vaccines, what to choose? Expert review of vaccines. 2016;15(6):671-3. [DOI:10.1586/14760584.2016.1161511] [PMID]
25. Guiso N. Bordetella pertussis and pertussis vaccines. Clinical Infectious Diseases. 2009;49(10):1565-9. [DOI:10.1086/644733] [PMID]
26. Hozbor DF. Outer membrane vesicles: an attractive candidate for pertussis vaccines. Expert Review of Vaccines. 2017;16(3):193-6. [DOI:10.1080/14760584.2017.1276832] [PMID]
27. Zurita ME, Wilk MW, Carriquiriborde F, Bartel E, Moreno GN, Misiak A, et al. A pertussis outer membrane vesicle-based vaccine induces lung-resident memory CD4 T cells and protection against Bordetella pertussis, including pertactin deficient strains. Frontiers in Cellular and Infection Microbiology. 2019;9:125-31. [DOI:10.3389/fcimb.2019.00125] [PMID] [PMCID]
28. He Q, Mertsola J. Factors contributing to pertussis resurgence. Future Microbiology. 2008;3(3):329-39. [DOI:10.2217/17460913.3.3.329] [PMID]
29. Tsang RS, Shuel M, Jamieson FB, Drews S, Hoang L, Horsman G, et al. Pertactin-negative Bordetella pertussis strains in Canada: characterization of a dozen isolates based on a survey of 224 samples collected in different parts of the country over the last 20 years. International Journal of Infectious Diseases. 2014;28:65-9. [DOI:10.1016/j.ijid.2014.08.002] [PMID]
30. Safarchi A, Octavia S, Luu LDW, Tay CY, Sintchenko V, Wood N, et al. Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model. Vaccine. 2015;33(46):6277-81. [DOI:10.1016/j.vaccine.2015.09.064] [PMID]
31. Martin SW, Pawloski L, Williams M, Weening K, DeBolt C, Qin X, et al. Pertactin-negative Bordetella pertussis strains: evidence for a possible selective advantage. Clinical Infectious Diseases. 2014;60(2):23-7. [DOI:10.1093/cid/ciu788] [PMID]
32. Raeven RH, Brummelman J, Pennings JL, Van Der Maas L, Tilstra W, Helm K, et al. Bordetella pertussis outer membrane vesicle vaccine confers equal efficacy in mice with milder inflammatory responses compared to a whole-cell vaccine. Scientific Reports. 2016;6:1-8. [DOI:10.1038/srep38240] [PMID] [PMCID]
33. Gaillard ME, Bottero D, Errea A, Ormazábal M, Zurita ME, Moreno G, et al. Acellular pertussis vaccine based on outer membrane vesicles capable of conferring both long-lasting immunity and protection against different strain genotypes. Vaccine. 2014;32(8):931-7. [DOI:10.1016/j.vaccine.2013.12.048] [PMID]
34. Bai X, Findlow J, Borrow R. Recombinant protein meningococcal serogroup B vaccine combined with outer membrane vesicles. Expert Opinion on Biological Therapy. 2011;11(7):969-85. [DOI:10.1517/14712598.2011.585965] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc