year 13, Issue 5 (November - December 2019)                   Iran J Med Microbiol 2019, 13(5): 380-391 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Baniasadi N, Kariminik A, Khoshroo S M R. Synthesis of MgO Nanoparticles and Their Antibacterial Properties on Three Food Poisoning Causing Bacteria. Iran J Med Microbiol 2019; 13 (5) :380-391
URL: http://ijmm.ir/article-1-978-en.html
1- Department of Microbiology,Kerman Branch,Islamic Azad University,Kerman,Iran
2- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran , a.kariminik@iauk.ac.ir
Abstract:   (5737 Views)
Background: Application of nanoparticles in the removal of pathogenic bacteria is very important. The use of these materials can be appropriate for controlling pathogens and food-borne diseases. The purpose of this study was to synthesize magnesium oxide nanoparticles and investigate its antibacterial effect on several bacteria causing food poisoning.
Materials and Methods: Oxide magnesium nanoparticles are synthesized by chemical deposition method. In order to control the quality and morphology of samples, XRD and SEM methods were used. The effect of different concentrations of nanoparticles on Staphylococcus aureus, Salmonella enterica and Bacillus cereus was evaluated by Agar well diffusion technique and the antibiotic resistance patterns of the bacteria used were also examined.
Results: MgO nanoparticles had an extensive antibiotic resistance but were effective on all bacteria and the minimum inhibitory concentration of growth on Staphylococcus aureus, Salmonella enterica and Bacillus cereus was 0.75, 1.25, and 5 mg/mL and the minimum bactericidal concentration of them were determined to be 0.15, 2.5 and 10 mg/mL, respectively.
Conclusion: MgO nanoparticles exhibited remarkable antibacterial activity against food poisoning causing bacteria and can be used as an antibacterial agent more effectively.
Full-Text [PDF 1233 kb]   (2595 Downloads) |   |   Full-Text (HTML)  (2306 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2019/10/19 | Accepted: 2020/03/4 | ePublished: 2020/03/4

References
1. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and Therapeutics. 2015;40(4):277.
2. Russell NJ, Gould GW. Food preservatives: Springer Science & Business Media; 2003. [DOI:10.1007/978-0-387-30042-9]
3. Udompijitkul P, Paredes Sabja D, Sarker MR. Inhibitory effects of nisin against Clostridium perfringens food poisoning and nonfood borne isolates. J Food Sci. 2012;77(1):M51-M6. [DOI:10.1111/j.1750-3841.2011.02475.x] [PMID]
4. Kagan CR. At the nexus of food security and safety: opportunities for nanoscience and nanotechnology. ACS Publications; 2016. [DOI:10.1021/acsnano.6b01483] [PMID]
5. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, et al. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012;30(10):499-511. [DOI:10.1016/j.tibtech.2012.06.004] [PMID]
6. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine.. 2017;12:1227. [DOI:10.2147/IJN.S121956] [PMID] [PMCID]
7. Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2(1):3. [DOI:10.1186/1477-3155-2-3] [PMID] [PMCID]
8. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. science. 2006;311(5761):622-7. [DOI:10.1126/science.1114397] [PMID]
9. Krishnamoorthy K, Moon JY, Hyun HB, Cho SK, Kim S-J. Mechanistic investigation on the toxicity of MgO nanoparticles toward cancer cells. J. Mater. Chem.. 2012;22(47):24610-7. [DOI:10.1039/c2jm35087d]
10. Jin T, He Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J Nanopart Res. 2011;13(12):6877-85. [DOI:10.1007/s11051-011-0595-5]
11. Hennekinne JA, De Buyser ML, Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev. 2012;36(4): 815-836. [DOI:10.1111/j.1574-6976.2011.00311.x] [PMID]
12. Tewari A, Abdullah S. Bacillus cereus food poisoning: international and Indian perspective.J. food sci. technol. 2015;52(5):2500-11. [DOI:10.1007/s13197-014-1344-4] [PMID] [PMCID]
13. Eneroth Å, Svensson B, Molin G, Christiansson A. Contamination of pasteurized milk by Bacillus cereus in the filling machine. J Dairy Res. 2001;68(2):189-96. [DOI:10.1017/S002202990100485X] [PMID]
14. Kunwar R, Singh H, Mangla V, Hiremath R. Outbreak investigation: Salmonella food poisoning. Med J Armed Forces India.. 2013;69(4):388-91. [DOI:10.1016/j.mjafi.2013.01.005] [PMID] [PMCID]
15. Cushing BL, Kolesnichenko VL, O'Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles.Chem. Rev. 2004;104(9):3893-9. [DOI:10.1021/cr030027b] [PMID]
16. Cui H, Feng Y, Ren W, Zeng T, Lv H, Pan Y. Strategies of large scale synthesis of monodisperse nanoparticles. Recent Pat Nanotechnol. 2009;3(1):32-41. [DOI:10.2174/187221009787003302] [PMID]
17. Valgas C, Souza SMd, Smânia EF, Smânia Jr A. Screening methods to determine antibacterial activity of natural products. Braz J Microbiol. 2007;38(2):369-80. [DOI:10.1590/S1517-83822007000200034]
18. Nazoori ES, Kariminik A. In Vitro Evaluation of Antibacterial Properties of Zinc Oxide Nanoparticles on Pathogenic Prokaryotes. J Appl Biotechnol Rep. 2018;5(4):162-5. [DOI:10.29252/JABR.05.04.05]
19. Saha B, Bhattacharya J, Mukherjee A, Ghosh A, Santra C, Dasgupta AK, et al. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res. Lett. 2007;2(12):614. [DOI:10.1007/s11671-007-9104-2] [PMCID]
20. Bonev B, Hooper J, Parisot J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother. 2008;61(6):1295-301. [DOI:10.1093/jac/dkn090] [PMID]
21. Li WR, Xie XB, Shi QS, Zeng HY, You-Sheng OY, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl.microbiol.biotechnol. 2010 ; 85 (4) : 1115-22. [DOI:10.1007/s00253-009-2159-5] [PMID]
22. Panyala NR, Peña-Méndez EM, Havel J. Silver or silver nanoparticles: a hazardous threat to the environment and human health? J Appl Biomed. 2008 Sep 1;6(3). [DOI:10.32725/jab.2008.015]
23. Hoseynzadeh A, Khaleghi M, Sasan H. Investigating the Antimicrobial Effects of Silver Nanoparticles Synthesized by Bacteria Isolated From Agricultural Soils of Kerman, Iran. Iran J Med Microbiol. 2017 Nov 10;11(5):136-48..
24. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C. 2014; 1;44:278-84 [DOI:10.1016/j.msec.2014.08.031] [PMID]
25. Martinez-Castanon G, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza J, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res. 2008;10(8):1343-8. [DOI:10.1007/s11051-008-9428-6]
26. Krishnamoorthy K, Manivannan G, Kim SJ, Jeyasubramanian K, Premanathan M. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanopart Res . 2012;14(9):1063. [DOI:10.1007/s11051-012-1063-6]
27. Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 2011;77(7):2325-31. [DOI:10.1128/AEM.02149-10] [PMID] [PMCID]
28. Samadi M, Shekarforoush SS, Ghaisari HR. Antimicrobial effects of magnesium oxide nanoparticles and ε-poly-L-lysine against Escherichia coli O157: H7 and Listeria monocytogenes. Iranian Journal of Medical Microbiology. 2016 Jul 15;10(2):33-41.
29. Ansari Moghaddam S, Rahmani F, Delirezh N. Investigating the effects of Magnesium Oxide Nanoparticle Toxicity on K562 Blood Type Cancer Cells. Armaghane danesh. 2017 Dec 15;22(5):584-94.
30. Choi J, Wang NS. Nanoparticles in biomedical applications and their safety concerns. Biomedical engineering from theory to applications. 2011; 29:486. [DOI:10.5772/18452]
31. Jain A, Ranjan S, Dasgupta N, Ramalingam C. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci. 2018; 58(2):297-317. [DOI:10.1080/10408398.2016.1160363] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc