year 12, Issue 6 (January - February 2019)                   Iran J Med Microbiol 2019, 12(6): 409-418 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pordel R, Matroodi S, Zamani I. Isolation of ASR7 Actinomycete Isolated from S12 Demospongia Marine Sponge and Study of Its Antibacterial Activity. Iran J Med Microbiol. 2019; 12 (6) :409-418
URL: http://ijmm.ir/article-1-780-en.html
1- Assistant Professor, Department of Marine Biology, Khorramshahr Marine Science and Technology University, Khorramshahr, Iran
2- Assistant Professor, Department of Marine Biology, Khorramshahr Marine Science and Technology University, Khorramshahr, Iran , s.matroodi@kmsu.ac.ir
Abstract:   (1732 Views)
Background and Aims: Marine Actinomycetes are gram-positive bacteria that sometimes are free, saprophytic or plant and animal-associated, including marine sponges. More than 75% of antibiotics and antimicrobial compounds are produced by actinomycetes. In recent years, due to the need for new drugs, marine microorganisms have been considered as new sources of potential production of significant metabolites. The purpose of this study is isolation and identification of marine sponge-associated Actinomycete and investigation of its antibacterial activity.
Materials and Methods: The Actinomycete was isolated from the marine Sponge collected from the depths of coastal waters in Bushehr and screened for antibacterial activity on pathogenic microorganisms of Escherichia coli، Bacillus cereus، Klebsiella spp.، Salmonella spp. and Proteus spp. using a Disk Diffusion Method. For molecular identification, genomic DNA was first extracted from isolate and then, the16S rDNA gene was amplified by PCR and Sequenced. The results were analyzed using bioinformatic programs, Bioedit and MEGA6.
Results: In this study, based on phylogeny studies, it was determined that the isolate belonged to thegenus Streptomyces, and biochemical studies showed that all tests except catalase and gram were negative; antibacterial activity study showed significant activity against three pathogenic bacteria, E. coli, Bacillus cereus and Salmonella spp. It was more active against Salmonella spp. (around 16mm inhibition zone diameter).
Conclusions: The results showed that depths of the Bushehr coastal waters have marine sponge associated actinomycetes, which are a source of secondary metabolites with biological activity.
 
Full-Text [PDF 814 kb]   (221 Downloads)    
Type of Study: Original | Subject: Microbial Biotechnology
Received: 2017/10/21 | Accepted: 2018/02/21

References
1. Fieseler L, Horn M, Wagner M, Hentschel U. Discovery of the Novel Candidate Phylum "Poribacteria" in Marine Sponges. J Appl Environ Microbiol. 2004;70(6):3724-32. [DOI:10.1128/AEM.70.6.3724-3732.2004] [PMID] [PMCID]
2. Taylor MW, Radax R, Steger D, Wagner M. Sponge-Associated Microorganisms: Evolution, Ecology, and Biotechnological Potential. Microbiol Mol Biol Rev. 2007;71(2):295-347. [DOI:10.1128/MMBR.00040-06] [PMID] [PMCID]
3. Zhang H, Lee YK, Zhang W, Lee HK. Culturable actinobacteria from the marine sponge Hymeniacidonperleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis. Antonie Van Leeuwenhoek. 2006;90(2):159-69. [DOI:10.1007/s10482-006-9070-1] [PMID]
4. Christensen A, Martin GD. Identification and bioactive potential of marine microorganisms from selected Florida coastal areas. Microbiologyopen. 2017;6(4):1-10. [DOI:10.1002/mbo3.448] [PMID] [PMCID]
5. Thakur NL, Müller WE. Biotechnological potential of marine sponges. Curr Sci. 2004;86(11):1506-12.
6. Brinkmann CM. Marker A., Kurtboke Dİ. An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery. Diversity. 2017;9(40):1-31. [DOI:10.3390/d9040040]
7. Indraningrat AA, Smidt H, Sipkema D. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds. Marine Drugs. 2016;14(5):87. [DOI:10.3390/md14050087] [PMID] [PMCID]
8. Sathiyanarayanan G, Saibaba G, Kiran GS, Yang YH, Selvin J. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Crit Rev Microbiol. 2017;43(3):294-312. [DOI:10.1080/1040841X.2016.1206060] [PMID]
9. Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT. Novel actinobacteria from marine sponges. Antonie Van Leeuwenhoek. 2005;87(1):29-36. [DOI:10.1007/s10482-004-6536-x] [PMID]
10. Webster NS, Wilson KJ, Blackall LL, Hill RT. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeidesodorabile. Appl Environ Microbiol. 2001;67(1):434-44. [DOI:10.1128/AEM.67.1.434-444.2001] [PMID] [PMCID]
11. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol. 2002;68(9):4431-40. [DOI:10.1128/AEM.68.9.4431-4440.2002] [PMID] [PMCID]
12. Kamke J, Taylor MW, Schmitt S. Activity profiles for marine sponge-associated bacteria obtained by 16S rRNAvs 16S rRNA gene comparisons. ISME J. 2010;4(4):498-508. [DOI:10.1038/ismej.2009.143] [PMID]
13. Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S, Horn M, Wagner M. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol. 2010;12(8):2070-82 [DOI:10.1111/j.1462-2920.2009.02065.x]
14. Miyadoh S. Research on antibiotic screening in Japan over the last decade: a producing microorganism approach. Actinomycetologica. 1993;7(2):100-6. [DOI:10.3209/saj.7_100]
15. Kämpfer P. The family Streptomycetaceae, part I: taxonomy. New York: Springer, The Prokaryotes; 2006, p. 538-604. [DOI:10.1007/0-387-30743-5_22]
16. Moran MA, Rutherford LT, Hodson RE. Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. Appl Environ Microbiol. 1995;61(10):3695-700.
17. Mincer TJ, Jensen PR, Kauffman CA, Fenical W. Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol. 2002;68(10):5005-11. [DOI:10.1128/AEM.68.10.5005-5011.2002] [PMID] [PMCID]
18. Kim TK, Garson MJ, Fuerst JA. Marine actinomycetes related to the 'Salinospora' group from the Great Barrier Reef sponge Pseudoceratina clavata. Environ Microbiol. 2005;7(4):509-18. [DOI:10.1111/j.1462-2920.2005.00716.x] [PMID]
19. Li ZY, Liu Y. Marine sponge Craniellaaustrialiensis‐associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis. Lett Appl Microbiol. 2006;43(4):410-6. [DOI:10.1111/j.1472-765X.2006.01976.x] [PMID]
20. Jiang S, Sun W, Chen M, Dai S, Zhang L, Liu Y, Lee KJ, Li X. Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp. Antonie Van Leeuwenhoek. 2007;92(4):405-16. [DOI:10.1007/s10482-007-9169-z] [PMID]
21. Baskaran R, Subramanian T, Zuo W, Qian J, Wu G, Kumar A. Major Source of Marine Actinobacteria and Its Biomedical Application. New York: Springer, Microbial Applications Vol.2; 2017, p. 55-82. [DOI:10.1007/978-3-319-52669-0_3]
22. Schneemann I, Ohlendorf B, Zinecker H, Nagel K, Wiese J, Imhoff JF. Nocapyrones A− D, γ-pyrones from a Nocardiopsis strain isolated from the marine sponge Halichondriapanicea. J Nat Prod. 2010;73(8):1444-7. [DOI:10.1021/np100312f] [PMID]
23. Zhang H, Zhang W, Jin Y, Jin M, Yu X. A comparative study on the phylogenetic diversity of culturableactinobacteria isolated from five marine sponge species. Antonie Van leeuwenhoek. 2008;93(3):241-8. [DOI:10.1007/s10482-007-9196-9] [PMID]
24. Selvin J, Shanmughapriya S, Gandhimathi R, Kiran GS, Ravji TR, Natarajaseenivasan K, Hema TA. Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsisdassonvillei MAD08. Appl Microbiol Biotechnol. 2009;83(3):435-45. [DOI:10.1007/s00253-009-1878-y] [PMID]
25. Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH, Ahmed S, et al. Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes. Mar drugs. 2010;8(3):399-412. [DOI:10.3390/md8030399] [PMID] [PMCID]
26. Jensen PR, Gontang E, Mafnas C, Mincer TJ, Fenical W. Culturable marine actinomycete diversity from tropical Pacific Ocean sediments. Environ Microbiol. 2005;7(7):1039-48. [DOI:10.1111/j.1462-2920.2005.00785.x] [PMID]
27. Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol. 2002;68(8):3878-85. [DOI:10.1128/AEM.68.8.3878-3885.2002] [PMID] [PMCID]
28. Wikler MA, editor. Performance standards for antimicrobial susceptibility testing: Seventeenth informational supplement. Wayne, PA: Approved Standards CLSI; 2007.
29. Liu D, Coloe S, Baird R, Pedersen J. Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol. 2000;38(1):471.
30. Hameş-Kocabaş EE, Ataç UZ. Isolation strategies of marine-derived actinomycetes from sponge and sediment samples. J Microbiol Methods. 2012;88(3):342-7. [DOI:10.1016/j.mimet.2012.01.010] [PMID]
31. Jensen PR, Dwight R, Fenical W. Distribution of actinomycetes in near-shore tropical marine sediments. Appl Environ Microbiol. 1991;57(4):1102-8.
32. Zhang H, Zhang W, Jin Y, Jin M, Yu X. A comparative study on the phylogenetic diversity of culturableactinobacteria isolated from five marine sponge species. Antonie Van leeuwenhoek. 2008;93(3):241-8. [DOI:10.1007/s10482-007-9196-9] [PMID]
33. Selvin J, Shanmughapriya S, Gandhimathi R, Kiran GS, Ravji TR, Natarajaseenivasan K, Hema TA. Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl Microbiol Biotechnol. 2009;83(3):435. [DOI:10.1007/s00253-009-1878-y] [PMID]
34. Öner Ö, Ekiz G, Hameş EE, Demir V, Gübe Ö, Özkaya FC, et al. Cultivable sponge-associated actinobacteria from coastal area of Eastern Mediterranean Sea. Advances in Microbiology. 2014;4(06):306. [DOI:10.4236/aim.2014.46037]
35. Prieto-Davó A, Fenical W, Jensen PR. Comparative actinomycete diversity in marine sediments. Aquat Microb Ecol. 2008;52(1):1-1. [DOI:10.3354/ame01211]
36. Cheng HR, Jiang N. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett. 2006;28(1):55-9. [DOI:10.1007/s10529-005-4688-z] [PMID]
37. Salami F. Isolation and determination of Streptomyces that produce antibiotic from soil. Pajouhesh va Sazandegi. 2004;17(3):41-7.
38. Mahmoud HM, Kalendar AA. Coral-associated Actinobacteria: diversity, abundance, and biotechnological potentials. Front Microbiol. 2016;7:204. [DOI:10.3389/fmicb.2016.00204]
39. Abdelmohsen UR, Yang C, Horn H, Hajjar D, Ravasi T, Hentschel U. Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar Drugs. 2014;12(5):2771-89. [DOI:10.3390/md12052771] [PMID] [PMCID]
40. Braña AF, Fiedler H-P, Nava H, González V, Sarmiento-Vizcaíno A, Molina A, et al. Two Streptomyces species producing antibiotic, antitumor, and anti-inflammatory compounds are widespread among intertidal macroalgae and deep-sea coral reef invertebrates from the central Cantabrian Sea. Microb Ecol. 2015;69(3):512-24. [DOI:10.1007/s00248-014-0508-0] [PMID]
41. Kennedy J, Baker P, Piper C, Cotter PD, Walsh M, Mooij MJ, et al. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from Irish waters. Mar Biotechnol (NY). 2009;11(3):384-96. [DOI:10.1007/s10126-008-9154-1] [PMID]
42. Zhang W, Zhang F, Li Z, Miao X, Meng Q, Zhang X. Investigation of bacteria with polyketide synthase genes and antimicrobial activity isolated from South China Sea sponges. J Appl Microbiol. 2009;107(2):567-75. [DOI:10.1111/j.1365-2672.2009.04241.x] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2019 All Rights Reserved | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb