year 13, Issue 5 (November & December 2019)                   Iran J Med Microbiol 2019, 13(5): 406-424 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zeynali M, Hatamian-Zarmi A, Larypoor M. Evaluation of Chitin-Glucan Complex Production in Submerged Culture of Medicinal Mushroom of Schizophilum commune: Optimization and Growth Kinetic. Iran J Med Microbiol. 2019; 13 (5) :406-424
URL: http://ijmm.ir/article-1-998-en.html
1- Department of Biology, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
2- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran , hatamian_a@ut.ac.ir
Abstract:   (2559 Views)

Background: Schizophyllum commune, is one of the important medicinal-fungi foods in the world. Due to its important constituents such as extracellular and intracellular polysaccharides, it is widely used in industry and medicine. One of the important polysaccharides of this fungus is chitin-glucan complex (CGC). The aim of this study was to investigate the growth of native fungus Schizophyllum commune isolated from northern forests of Iran and to optimize its CGC production in submerged cultivation.

Materials and Methods: Growth kinetics studies of native Schizophyllum commune fungi of Iran and CGC production were performed and growth curves were plotted. In order to increase CGC production, optimization of culture medium was done by investigating independent variables of pH, inoculum percentage and aeration percentage by response surface methodology.

Results: The results showed that the specific growth coefficient of Iranian native Schizophyllum commune (max µ) was 0.991-day. Tenth day was also selected as the best time for growth and production in the submerged medium. In optimum conditions, initial pH of 8.92, percentage of inoculum 9.99 and aeration percentage of 150 was obtained. After 10 days, the amount of dry cell weight was 13.05 g/L and the amount of chitin-glucan complex produced was 2.9 g/L.

 
Conclusion: Investigation of kinetic parameters of growth and production showed that the experimental data are in accordance with the logistic growth model with R2=0.9665 and the  Luedeking and Piret  model for production with R2 = 0.9439. The results also show that the initial pH has a significant effect on the growth of this fungus.

Full-Text [PDF 1577 kb]   (937 Downloads) |   |   Full-Text (HTML)  (322 Views)  
Type of Study: Original | Subject: Microbial Biotechnology
Received: 2019/11/29 | Accepted: 2019/12/20 | ePublished: 2020/01/10

References
1. Singh A, Dutta PK, Kumar H, Kureel AK, Rai AK. Synthesis of chitin-glucan-aldehyde-quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydr Polym. 2018;193:99-107. [DOI:10.1016/j.carbpol.2018.03.092] [PMID]
2. Chagas B, Farinha I, Galinha CF, Freitas F, Reis MAM. Chitin-glucan complex production by Komagataella (Pichia) pastoris: Impact of cultivation pH and temperature on polymer content and composition. N Biotechnol. 2014;31(5):468-74. [DOI:10.1016/j.nbt.2014.06.005] [PMID]
3. Vysotskaya MR, Maslova G V., Petrova VA, Nud'ga LA. Electrochemical recovery of chitin-glucan complex from Pleurotus ostreatus basidial fungus and properties of the product. Russ J Appl Chem. 2009;82(8):1390-5. [DOI:10.1134/S1070427209080138]
4. Gautier S, Xhauflaire-Uhoda E, Gonry P, Piérard GE. Chitin-glucan, a natural cell scaffold for skin moisturization and rejuvenation. Int J Cosmet Sci. 2008;30(6):459-69. [DOI:10.1111/j.1468-2494.2008.00470.x] [PMID]
5. Kirtzel J, Scherwietes EL, Merten D, Krause K, Kothe E. Metal release and sequestration from black slate mediated by a laccase of Schizophyllum commune. Environ Sci Pollut Res. 2019;26(1):5-13. [DOI:10.1007/s11356-018-2568-z] [PMID]
6. Farinha I, Duarte P, Pimentel A, Plotnikova E, Chagas B, Mafra L, et al. Chitin-glucan complex production by Komagataella pastoris: Downstream optimization and product characterization. Carbohydr Polym. 2015 Oct 5;130:455-64. [DOI:10.1016/j.carbpol.2015.05.034] [PMID]
7. Feofilova EP, Nemtsev D V., Tereshina VM, Memorskaya AS. Developmental change of the composition and content of the chitin-glucan complex in the fungus Aspergillus niger. Appl Biochem Microbiol. 2006;42(6):545-9. [DOI:10.1134/S0003683806060032]
8. Du B, Zeng H, Yang Y, Bian Z, Xu B. Anti-inflammatory activity of polysaccharide from Schizophyllum commune as affected by ultrasonication. Int J Biol Macromol. 2016;91:100-5. [DOI:10.1016/j.ijbiomac.2016.05.052] [PMID]
9. Sornlake W, Rattanaphanjak P, Champreda V, Eurwilaichitr L, Kittisenachai S, Roytrakul S, et al. Characterization of cellulolytic enzyme system of Schizophyllum commune mutant and evaluation of its efficiency on biomass hydrolysis. Biosci Biotechnol Biochem. 2017;81(7):1289-99. [DOI:10.1080/09168451.2017.1320937] [PMID]
10. Abdel-Mohsen AM, Jancar J, Massoud D, Fohlerova Z, Elhadidy H, Spotz Z, et al. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties. Int J Pharm. 2016 Aug 20;510(1):86-99. [DOI:10.1016/j.ijpharm.2016.06.003] [PMID]
11. Estrada-Mata E, Navarro-Arias MJ, Pérez-García LA, Mellado-Mojica E, López MG, Csonka K, et al. Members of the Candida parapsilosis complex and Candida albicans are differentially recognized by human peripheral blood mononuclear cells. Front Microbiol. 2016;6(JAN):1-11. [DOI:10.3389/fmicb.2015.01527] [PMID] [PMCID]
12. Farinha I, Duarte P, Pimentel A, Plotnikova E, Chagas B, Mafra L, et al. Chitin-glucan complex production by Komagataella pastoris: Downstream optimization and product characterization. Carbohydr Polym. 2015 Oct 5;130:455-64. [DOI:10.1016/j.carbpol.2015.05.034] [PMID]
13. Nwe N, Stevens WF, Tokura S, Tamura H. Characterization of chitosan and chitosan-glucan complex extracted from the cell wall of fungus Gongronella butleri USDB 0201 by enzymatic method. Enzyme Microb Technol. 2008 Feb 4;42(3):242-51. [DOI:10.1016/j.enzmictec.2007.10.001]
14. Li W, Zhou P, Yu L. Statistical optimization of the medium composition by response surface methodology to enhance schizophyllan production by Schizophyllum commune. Zeitschrift fur Naturforsch - Sect C J Biosci. 2011;66 C(3-4):173-81. [DOI:10.1515/znc-2011-3-412] [PMID]
15. Jonathan SG, Fasidi IO. Studies on phytohormones, vitamins and mineral element requirements of Lentinus subnudus (Berk) and schizophyllum commune (Fr. Ex. Fr) from Nigeria. Food Chem. 2001;75(3):303-7. [DOI:10.1016/S0308-8146(01)00154-6]
16. Bowman SM, Free SJ. The structure and synthesis of the fungal cell wall. 2006;799-808. [DOI:10.1002/bies.20441] [PMID]
17. Hao LM, Xing XH, Li Z, Zhang JC, Sun JX, Jia SR, et al. Optimization of effect factors for mycelial growth and exopolysaccharide production by schizophyllum commune. In: Applied Biochemistry and Biotechnology. 2010. p. 621-31. [DOI:10.1007/s12010-008-8507-6] [PMID]
18. Society P, Microbiologists OF. P O L S K I E T O WA R Z Y S T W O M I K R O B I O L O G Ó W Polish Journal of Microbiology. 2011;57(1):223-8.
19. Meichik NR, Vorob'ev D V. Chitin-glucan complex in cell walls of the Peltigera aphthosa lichen. Appl Biochem Microbiol. 2012;48(3):307-11. [DOI:10.1134/S0003683812030088]
20. Ordonñez L, Garciía J, Bolanños G. Producing chitin and chitin-glucan complexes from Aspergillus niger biomass using subcritical water. InProceedings of the Ibero-american Conference on Supercritical Fluids, Cartagena, Colombia 2013 Apr (pp. 1-5).
21. Veverka M, Dubaj T, Gallovič J, Jorík V, Veverková E, Mičušík M, et al. Beta-glucan complexes with selected nutraceuticals: Synthesis, characterization, and stability. J Funct Foods. 2014;8(1):309-18. [DOI:10.1016/j.jff.2014.03.032]
22. Moraditanha A, HatamianZarmi A, EbrshimiHoseinZade B, BeigomMokhtariHoseini Z, KianiRad S. Study of growth kinetics and production of chitin-glucans complex in drug-immersed cultivation of medicinal fungi Ganoderma lucidum. Interdiscip J Sci Res. 2018;2(1):31-43. [In Persian]
23. Tajdini F, Amini MA, Nafissi-Varcheh N, Faramarzi MA. Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus. Int J Biol Macromol. 2010 Aug 1;47(2):180-3. [DOI:10.1016/j.ijbiomac.2010.05.002] [PMID]
24. Amorim RV da S, Souza W de, Fukushima K, Campos-Takaki GM de. Faster Chitosan Production By Mucoralean Strains. J Microbiol. 2001;(1517-8382):20-3. [DOI:10.1590/S1517-83822001000100005]
25. Chen W, Zhao Z, Chen SF, Li YQ. Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro. Bioresour Technol. 2008 May 1;99(8):3187-94. [DOI:10.1016/j.biortech.2007.05.049] [PMID]
26. Abdel-Gawad KM, Hifney AF, Fawzy MA, Gomaa M. Technology optimization of chitosan production from Aspergillus niger biomass and its functional activities. Food Hydrocoll. 2017 Feb 1;63:593-601. [DOI:10.1016/j.foodhyd.2016.10.001]
27. Tang YJ, Zhong JJ. Modeling the kinetics of cell growth and ganoderic acid production in liquid static cultures of the medicinal mushroom Ganoderma lucidum. Biochem. Eng. J. 2004; 21: 259-264. [DOI:10.1016/j.bej.2004.06.008]
28. Feng YL, Li WQ , Wu XQ, Cheng JW , Ma SY. Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochem. Eng. J. 2010; 49: 104-112. [DOI:10.1016/j.bej.2009.12.002]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc