year 13, Issue 2 (May - June 2019)                   Iran J Med Microbiol 2019, 13(2): 142-150 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Beig M, Arabestani M R. Investigation of MexAB-OprM efflux pump gene expression in clinical isolates of pseudomonas aeruginosa isolated from Intensive Care Unit. Iran J Med Microbiol. 2019; 13 (2) :142-150
URL: http://ijmm.ir/article-1-937-en.html
1- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
2- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran , mohammad.arabestani@gmail.com
Abstract:   (3064 Views)
Background and Aims: Pseudomonas aeruginosa is one of the most important pathogens of nosocomial infections, especially in the ICU (Intensive Care Unit), which has resistance to a wide range of antibiotics, especially Carbapenems. Among the most important resistance mechanisms of this bacteria against carbapenems are MexAB-OprM efflux pump. Therefore, the aim of this study was to evaluate the gene expression of MexAB-OprM efflux pump in clinical isolates of P. aeruginosa that isolated from ICU.
Materials and Methods: A total of 33 sampales were isolated from patient in ICU units from different Hamadan hospitals, since november 2018 to May 2019. Antibiotic susceptibility testing was performed using disk diffusion and Minimal Inhibitory Concentration (MIC) methods by Etest for imipenem. Expression levels of MexAB-OprM efflux pump genes were measured by Real-Time PCR.
Results: The results of statistical analysis showed that the highest resistance was to Ceftriaxone 21 (63.63%) and the lowest resistance was to piperacillin, 11 (33.33%). The results of the MIC of imipenem showed that among off 33 samples isolated from the ICU, 14 (42.42%) and 19 (57.57%) isolates were resistant and susceptible, respectively. Increased expression of of MexA, MexB and OprM genes compared with control strain were observed in 20% (4/20), 25% (5/20) and 20% (4/20) of isolates, respectively.
Conclusion: Increased expression of MexAB-OprM efflux pump is one of the most common mechanisms in the resistance of P. aeruginosa isolates against Carbapenem antibiotics in different units of hospitals especially intensive care unit. So identification of resistance mechanisms to Carbapenem antibiotics can be useful in controlling and treating such resistant isolates.
Full-Text [PDF 1102 kb]   (908 Downloads)    
Type of Study: Original | Subject: Medical Bacteriology
Received: 2019/05/25 | Accepted: 2019/08/24 | ePublished: 2019/09/16

References
1. Tam VH, Chang KT, Abdelraouf K, Brioso CG, Ameka M, McCaskey LA, et al. Prevalence, resistant mechanisms, and susceptibility of multidrugresistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010; 54(3):1160-4. [DOI:10.1128/AAC.01446-09] [PMID] [PMCID]
2. Bonten MJ, Bergmans DC, Ambergen AW, De Leeuw PW, Van der Geest S, Stobberingh EE, et al Risk factors for pneumonia, and colonization of respiratory tract and stomach in mechanically ventilated ICU patients. Am J Respir Crit Care Med1996; 154(5):1339-46. [DOI:10.1164/ajrccm.154.5.8912745] [PMID]
3. Agodi Agodi A, Barchitta M, Cipresso R, Giaquinta L, Romeo MA, Denaro C. Pseudomonas aeruginosa carriage, colonization, and infection in ICU patients. Intensive Care Med 2007; 33(7):1155- 61. [DOI:10.1007/s00134-007-0671-6] [PMID]
4. Thuong M, Arvaniti K, Ruimy R, de la Salmonière P, Scanvic-Hameg A, Lucet JC, et al. Epidemiology of Pseudomonas aeruginosa and risk factors for carriage acquisition in an intensive care unit. J Hosp Infect 2003; 53(4):274-82. [DOI:10.1053/jhin.2002.1370] [PMID]
5. Kaye KS, Pogue JMJPTJoHP, Therapy D. Infections caused by resistant gram‐negative bacteria: epidemiology and management. Pharmacotherapy 2015;35(10):949-62. [DOI:10.1002/phar.1636] [PMID]
6. Rojo-Bezares B, Cavalié L, Dubois D, Oswald E, Torres C, Sáenz YJJomm. Characterization of carbapenem resistance mechanisms and integrons in Pseudomonas aeruginosa strains from blood samples in a French hospital. J Med Microbiol.2016;65(4):311-9. [DOI:10.1099/jmm.0.000225] [PMID]
7. Dreier J, Ruggerone PJFim. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol. 2015;6:660. [DOI:10.3389/fmicb.2015.00660] [PMID] [PMCID]
8. Tian Z-X, Yi X-X, Cho A, O'Gara F, Wang Y-PJPp. CpxR activates MexAB-OprM efflux pump expression and enhances antibiotic resistance in both laboratory and clinical nalB-type isolates of Pseudomonas aeruginosa. PLOS. 2016;12(10):e1005932. [DOI:10.1371/journal.ppat.1005932] [PMID] [PMCID]
9. Pan Y-p, Xu Y-h, Wang Z-x, Fang Y-p, Shen J-lJAom. Overexpression of MexAB-OprM efflux pump in carbapenem-resistant Pseudomonas aeruginosa. Arch Microbiol. 2016;198(6):565-71. [DOI:10.1007/s00203-016-1215-7] [PMID]
10. Gaby W, Hadley CJJob. Practical laboratory test for the identification of Pseudomonas aeruginosa.J bacteriol 1957;74(3):356.
11. Annear D, Black J, Govender S. Multilocus sequence typing of carbapenem resistant Pseudomonas aeruginosa isolated from patients presenting at port Elizabeth hospitals, south Africa. Afr J Infect Dis. 2017;11(2):68-74. [DOI:10.21010/ajid.v11i2.9] [PMID] [PMCID]
12. Clinical and Laboratory Standards Institute. 2018. Performance standards for antimicrobial susceptibility testing, 28th ed. CLSI supplement M100S. CLSI, PA. 38-40.
13. Mustafa MH, Chalhoub H, Denis O, Deplano A, Vergison A, Rodriguez-Villalobos H, et al. Antimicrobial Susceptibility of Pseudomonas aeruginosa Isolated from Cystic Fibrosis Patients in Northern Europe. Antimicrobial agents chemother. 2016;60(11):6735-41 [DOI:10.1128/AAC.01046-16] [PMID] [PMCID]
14. Clarke l, Millar BC and Moore JC. Extraction of genemic DNA from pseudomonas aeroginosa: a comparison of three methods. Br j Biomed. 2003; 60(1):34-5. [DOI:10.1080/09674845.2003.11978040]
15. Tang Y, Li B, Dai J, Dai J, Wang X, Si J, et al. Genotyping of pseudomonas aeruginosa type III secretion system using magnetic enrichment multiplex polymerase chain reaction and chemiluminescence. J Biomed Nanotechnol. 2016;12(4):762-9. [DOI:10.1166/jbn.2016.2222] [PMID]
16. Heera R, Sivachandran P, Chinni SV, Mason J, Croft L, Ravichandran M, et al. Efficient extraction of small and large RNAs in bacteria for excellent total RNA sequencing and comprehensive transcriptome analysis. BMC Res Notes. 2015;8(1):754. [DOI:10.1186/s13104-015-1726-3] [PMID] [PMCID]
17. Arabestani MR, Rajabpour M, Yousefi Mashouf R, Alikhani MY, Mousavi SM. Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR. Arch Iran Med. 2015;18(2):102-8.
18. Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006;50(5):1633-41. [DOI:10.1128/AAC.50.5.1633-1641.2006] [PMID] [PMCID]
19. Su F, Wang J. Berberine inhibits the MexXY-OprM efflux pump to reverse imipenem resistance in a clinical carbapenem-resistant Pseudomonas aeruginosa isolate in a planktonic state. Exp Ther Med. 2018;15(1):467-72. [DOI:10.3892/etm.2017.5431]
20. Azimi A, Naserpour T, Bazmi F, Peymani A, Aslanimehr M, Saadat S. Evaluation of oprD Gene Expression in Carbapenem-Resistant Pseudomonas aeruginosa Strains Isolated From Severe Burn Patients With Secondary Infection. Biotech. Health. Sci. 2015. [DOI:10.17795/bhs30748]
21. Gardner JG, Grundy FJ, Henkin TM, Escalante-Semerena JCJJob. Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD+ involvement in Bacillus subtilis. ASM. 2006;188(15):5460-8. https://doi.org/10.1128/JB.01181-06 [DOI:10.1128/JB.00215-06] [PMCID]
22. Varaiya A, Kulkarni N, Kulkarni M, Bhalekar P, Dogra JJIJoMR. Incidence of metallo beta lactamase producing Pseudomonas aeruginosa in ICU patients. Indian J Med Res. 2008;127(4). [DOI:10.4103/0377-4929.41683] [PMID]
23. Plant AJ, Dunn A, Porter RJJEroa-it. Ceftolozane-tazobactam resistance induced in vivo during the treatment of MDR Pseudomonas aeruginosa pneumonia. Expert Rev Anti Infect Ther 2018;16(5):367-8. [DOI:10.1080/14787210.2018.1473079] [PMID]
24. Siasi E, Rafiei Tabatabaii R, MoslehiMehr F. Isolation of bla_vim gene in Antibiotic resistant Pseudomonas aeruginosa from hospitals. New Cellularand Molecular Biotechnology Journal. 2018;8(29):97-106
25. Britt NS, Ritchie DJ, Kollef MH, Burnham C-AD, Durkin MJ, Hampton NB, et al. Importance of site of infection and antibiotic selection in the treatment of carbapenem-resistant Pseudomonas aeruginosa sepsis. Antimicrob Agents Chemother. 2018;62(4):e02400-17. [DOI:10.1128/AAC.02400-17] [PMID] [PMCID]
26. Buehrle DJ, Shields RK, Clarke LG, Potoski BA, Clancy CJ, Nguyen MHJAa, et al. Carbapenem-resistant Pseudomonas aeruginosa bacteremia: risk factors for mortality and microbiologic treatment failure. J Hosp Infect. 2017;61(1):e01243-16. [DOI:10.1128/AAC.01243-16] [PMID] [PMCID]
27. Mihani F, Khosravi A. Isolation of Pseudomonas aeruginosastrains producing metallo beta lactamases from infections in burned patients and identification of blaIMP and blaVIMgenes by PCR %J Iranian Journal of Medical Microbiology. 2007;1(1):23-31.
28. Fazeli H, Havaei SA, Solgi H, Shokri D, Motallebirad T. Pattern of Antibiotic Resistance in Pesudomonas Aeruginosa Isolated from Intensive Care Unit, Isfahan, Iran. J Isfahan Med Sch 2013; 31(232): 433-8
29. Aminizadeh Z, Kashi MS. Prevalence of multi-drug resistance and pandrug resistance among multiple gram-negative species: experience in one teaching hospital, Tehran, Iran. Int Res J Microbiol 2011; 2:90-5.
30. Bayani M, Siadati S, Rajabnia R, Taher AA. Drug Resistance of Pseudomonas aeruginosa and Enterobacter cloacae Isolated from ICU, Babol, Northern Iran. Int J Mol Cell Med 2013; 2(4):204-9.
31. Moniri R, Mosayebi Z, Movahedian AH, Mousavi GA. Emergence of multidrug resistant Pseudomonas aeruginosa isolates in neonatal septicemia. J Infect Dis Antimicrob Agents 2005; 22:39-44.
32. Papadopoulos CJ, Carson CF, Chang BJ, Riley TV. Role of the MexAB-OprM efflux pump of Pseudomonas aeruginosa in tolerance to tea tree (Melaleuca alternifolia) oil and its monoterpene components terpinen-4-ol, 1,8-cineole, and alpha-terpineol. Appl Environ Microbiol. 2008;74(6):1932-5. [DOI:10.1128/AEM.02334-07] [PMID] [PMCID]
33. Amin NE, Giske CG, Jalal S, Keijser B, Kronvall G, Wretlind BJA. Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS. 2005;113(3):187-96. [DOI:10.1111/j.1600-0463.2005.apm1130306.x] [PMID]
34. Muderris T, Durmaz R, Ozdem B, Dal T, Unaldı O, Aydogan S, et al. Role of efflux pump and OprD porin expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. JIDC. 2018;12(01):001-8. [DOI:10.3855/jidc.9486]
35. Lee K, Park AJ, Kim MY, Lee HJ, Cho J-H, Kang JO, et al. Metallo-β-lactamase-producing Pseudomonas spp. in Korea: high prevalence of isolates with VIM-2 type and emergence of isolates with IMP-1 type. Yonsei Med J.2009;50(3):335-9. [DOI:10.3349/ymj.2009.50.3.335] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc