year 10, Issue 5 (November - December 2016)                   Iran J Med Microbiol 2016, 10(5): 20-30 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Haddadi Zahmatkesh M A, Laripoor M, Mirzaie A, Ashrafi F. Prevalence of norA and norB efflux pump genes in clinical isolates of Staphylococcus aureus and their contribution in ciprofloxacin resistance. Iran J Med Microbiol. 2016; 10 (5) :20-30
1- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
2- Young Researchers Club and the elite, East Tehran Branch, Islamic Azad University, Tehran, Iran
3- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran ,
Abstract:   (9390 Views)

Background and Aim: Recently, ciprofloxacin resistance in Staphylococcus aureus strains due to efflux pumps has become a significant challenge. This study was performed to evaluate the frequency of norA and norB efflux pump genes and their roles in resistance to ciprofloxacin in clinical isolates of S. aureus.

Materials and Methods: A total of 250 clinical samples were collected from different hospitals Tehran-Iran during 2015-2016 and S. aureus isolates were identified by standard microbiological tests. Antimicrobial susceptibility patterns were determined by disk diffusion method using CLSI guideline. Subsequently, the presence of norA and norB efflux pump genes in ciprofloxacin isolates were detected using PCR method. Finally, active efflux pumps were evaluated using ciprofloxacin and ethidium bromide MICs.

Results: Among 250 clinical samples, 50 S. aureus isolates were recovered and the results of antibiotic susceptibility tests showed the 34 out of 50 S. aureus isolates (68%) were resistant to methicillin (MRSA) and from the 34 MRSA, 12 isolates (24%) were resistant to ciprofloxacin. Moreover, the norA and norB genes were found in 100% and 83% of ciprofloxacin resistant isolates, respectively.

Conclusions: The results of this study show the potential role played by norA and norB efflux pumps in the development of resistance to ciprofloxacin in clinical isolates of S. aureus and the detection of these genes could be important for the suggestion of an effective treatment model for the S. aureus infections.

Full-Text [PDF 629 kb]   (2760 Downloads)    
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2016/06/18 | Accepted: 2016/12/28 | ePublished: 2017/01/15

1. Corredor A, Luligo E, Moncayo O, Santacruz I, Álvarez A. Relationship between super antigenicity, antimicrobial resistance and origin of Staphylococcus aureus isolated. Colomb Med (Cali) 2016;47(1):15-20. [PubMed]
2. Hefzy EM, Hassan GM, AbdReheem F. Detection of panton-valentine leukocidin-positive methicillin-resistant Staphylococcus aureus nasal carriage among Egyptian health care workers. Surg Infect (Larchmt) 2016;17(3):369-75. [PubMed]
3. Osman KM, Amer AM, Badr JM, Helmy NM, Elhelw RA, Orabi A, Bakry M, Saad AS. Antimicrobial resistance, biofilm formation and mecA characterization of methicillin-susceptible S. aureus and Non-S. aureus of beef meat origin in Egypt. Front Microbiol 2016;7(222):1-12. [PubMed]
4. Jeremić LP, Kapulica NK, Ristanović E, Josić D, Lepsanović Z. Prevalence of Panton-Valentine leukocidin genes in community-associated methicillin-resistant Staphylococcus aureus in the district of Pomoravlje. Vojnosanit Pregl 2016;73(3):256-60. [PubMed]
5. Gómez P, Lozano C, Benito D, Estepa V, Tenorio C, Zarazaga M, Torres C. Characterization of Staphylococci in urban wastewater treatment plants in Spain, with detection of methicillin resistant Staphylococcus aureus ST398. Environ Pollut 2016; 212:71-6. [PubMed]
6. Firsov AA, Smirnova MV, Strukova EN, Vostrov SN, Portnoy YA, Zinner SH. Enrichment of resistant Staphylococcus aureus at ciprofloxacin concentrations simulated within the mutant selection window: bolus versus continuous infusion. Int J Antimicrob Agents 2008;32(6):488-93. [PubMed]
7. Mustapha M, Bukar-Kolo YM, Geidam YA, Gulani IA. Phenotypic and genotypic detection of methicillin-resistant Staphylococcus aureus in hunting dogs in Maiduguri metropolitan, Borno State, Nigeria. Vet World 2016;9(5):501-6. [PubMed]
8. Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med 2007;39: 162–176. [PubMed]
9. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs 2004;64; 159–204. [PubMed]
10. Kosmidis C, Schindler PL, Jacinto D, Patel K, Bains SM, Seo GW. Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int J Antimicrob Agents 2012; 40:204–209. [PubMed]
11. Paulsen IT, Lewis K. Microbial Multidrug Efflux. Horizon Scientific 2002; 3(2):143-4. [PubMed]
12. Mulet X, Moyá B, Juan C, Macià MD, Pérez JL, Blázquez J, Oliver A. Antagonistic interactions of Pseudomonas aeruginosa antibiotic resistance mechanisms in planktonic but not biofilm growth. Antimicrob Agents Chemother 2011;55(10):4560-8. [PubMed]
13. Soto SM. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 2013;1;4(3):223-9. [PubMed]
14. De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, Iglewski BH, Storey DG. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 2001;45(6):1761-70. [PubMed]
15. Poole K. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J Mol Microbiol Biotechnol 2001;3(2):255-64. [PubMed]
16. Yoshida H, Bogaki M, Nakamura S, et al. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J Bacteriol 1990;172:6942–9. [PubMed]
17. Noguchi N, Okada H, Narui K, et al. Comparison of the nucleotide sequence and expression of norA genes and microbial susceptibility in 21 strains of Staphylococcus aureus. Microb Drug Resist 2004;10:197–203. [PubMed]
18. Sierra JM, Ruiz J, de Anta MTJ, et al. Prevalence of two different genes encoding NorA in 23 clinical strains of Staphylococcus aureus. J Antimicrob Chemother 2000;46:145–6. [PubMed]
19. Truong-Bolduc QC, Dunman PM, Strahilevitz J, et al. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 2005;187: 2395–405. [PubMed]
20. Motallebi M, Jabalameli F, Asadollahi K, Taherikalani M, Emaneini M. Spreading of genes encoding enterotoxins, haemolysins, adhesin and biofilm among methicillin resistant Staphylococcus aureus strains with Staphylococcal cassette chromosome mec type IIIA isolated from burn patients. Microb Pathog 2016;26; 97:34-37. [in persion] [PubMed]
21. Clinical and laboratory standards institute (CLSI). Performance standards for antimicrobial susceptibility testing; 16th informational supplement. CLSI, Wayne, Pa. M100-S16, 26, no. 3. 2015.
22. Wielders CL, Fluit AC, Brisse S, Verhoef J, Schmitz FJ. mecA gene is widely disseminated in Staphylococcus aureus population. J Clin Microbiol 2002;40(11):3970-5. [PubMed]
23. Costa SS, Falcão C, Viveiros M, Machado D, Martins M, Melo-Cristino J, Amaral L, Couto I. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC Microbiol 2011;27:11:241. [Article]
24. Ding Y, Onodera Y, Lee JC, et al. NorB, an efflux pump in Staphylococcus aureus strain MW2, contributes to bacterial fitness in abscesses. J Bacteriol 2008;190(21):7123-9. [Article]
25. Ardebili A, Lari AR, Beheshti M, Lari ER. Association between mutations in gyrA and parC genes of Acinetobacter baumannii clinical isolates and ciprofloxacin resistance. Iran J Basic Med Sci 2015;18(6):623-6. [in persion] [PubMed]
26. Zamani A, Sadeghian S, Ghaderkhani J, Alikhani MY, Najafimosleh M, Taghi GoodarziM, et al. Detection of methicillin-resistance (mec-A) gene in Staphylococcus aureus strains by PCR and determination of antibiotic susceptibility. Ann microbiol 2007;57(2):273-6. [in persion] [Article]
27. Moradi N, Javadpour S, Karmostaji A. Reduced sensitivity of Staphylococcus aureus to vancomycin. Hormoz Uni of Med Sciences 2011;15(3):169-77. [in persion]
28. Ghosh S, Banerjee M. Methicillin resistance & amp; inducible clindamycin resistance in Staphylococcus aureus. Indian J Med Res. 2016;143(3):362-4. [PubMed]
29. Motallebi M, Jabalameli F, Asadollahi K, Taherikalani M, Emaneini M. Spreading of genes encoding enterotoxins, haemolysins, adhesin and biofilm among methicillin resistant Staphylococcus aureus strains with Staphylococcal cassette chromosome mec type IIIA isolated from burn patients. Microb Pathog 2016;26:97:34-37. [in persion] [PubMed]
30. Gruger T, Nitiss JL, Maxwell A, Zechiedrich EL, Heisig P, Seeber S, Pommier Y, Strumberg D. A mutation in Escherichia coli DNA gyrase conferring quinolone resistance results in sensitivity to drugs targeting eukaryotic topoisomerase II. Antimicrob Agents Chemother 2004;48(12):4495-504. [PubMed]
31. Pourmand MR, Yousefi M, Salami SA, Amini M. Evaluation of expression of NorA efflux pump in ciprofloxacin resistant Staphylococcus aureus against hexahydroquinoline derivative by Real-Time PCR. Acta Med Iran 2014;52(6):424-9. [in persion] [PubMed]
32. Saiful AJ, Mastura M, Zarizal S, Mazurah MI, Shuhaimi M, Ali AM. Efflux genes and active efflux activity detection in Malaysian clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). J Basic Microbiol 2008; 48(4): 245-51. [PubMed]
33. Huet AA, Raygada JL, Mendiratta K, Seo SM, Kaatz GW. Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. Microbiol 2008;154(Pt 10):3144-53. [PubMed]
34. Patel D, Kosmidis C, Seo SM, Kaatz GW. Ethidium bromide MIC screening for enhanced efflux pump gene expression or efflux activity in Staphylococcus aureus. Antimicrob Agents Chemother 2010;54(12):5070-3. [PubMed]
35. Costa SS, Junqueira E, Palma C, Viveiros M, Melo-Cristino J, Amaral L, Couto I. Resistance to antimicrobials mediated by efflux pumps in Staphylococcus aureus. Antibiotics (Basel) 2013;13:2(1):83-99. [Article]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc