year 19, Issue 1 (January - February 2025)                   Iran J Med Microbiol 2025, 19(1): 2-2 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nawan N, Handayani S, Immanuela Toemon A. Bioinformatic Analysis of Dihomo-γ-linolenic Acid (DGLA) Targeting Virulence Factors in Bacteria Causing Infectious Diseases. Iran J Med Microbiol 2025; 19 (1) :2-2
URL: http://ijmm.ir/article-1-2520-en.html
1- Departement of Microbiology, Faculty of Medicine, University of Palangka Raya, Palangkaraya, Indonesia , nawan@med.upr.ac.id
2- Departement of Biochemistry, Faculty of Medicine, University of Palangka Raya, Palangkaraya, Indonesia
3- Departement of Parasitology, Faculty of Medicine, University of Palangka Raya, Palangkaraya, Indonesia
Abstract:   (137 Views)

Background and Objective: Some bacteria, including Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Streptococcus pyogenes (S. pyogenes), contribute to the development of infectious diseases. Bacterial diseases are becoming more common due to the increasing resistance of microorganisms to various antibiotics. The global health community grapples with a major challenge posed by the increasing prevalence of antibiotic resistance. As a result, there’s a need for novel therapies to replace ineffective antimicrobial drugs. Streptomyces, known for its abundant production of natural compounds, plays a significant role in the arsenal of antimicrobial agents. Dihomo-γ-linolenic acid (DGLA) shows potential as a novel antibacterial compound derived from Streptomyces actinomycinicus (S. actinomycinicus) PJ85. The study investigated bioinformatically how DGLA impacts the virulence factors of S. aureus, P. aeruginosa, and S. pyogenes.
Methods: The study examined the interaction of DGLA with virulence factors of the mentioned bacteria using STITCH v5.0 for protein-compound interactions. Functional classification of targeted proteins was done using VICMPred, while VirulentPred 2.0 assessed their virulence properties. BepiPred v.2 was used for B cell epitope analysis, and PSORTb v.3 for subcellular protein localization.
Results: Based on the analysis results, various virulent proteins from organisms interact with DGLA. For instance, in S. aureus COL, we find epiP. In P. aeruginosa, proteins such as PA5371, tesB, PA3829, PA3741, and PA2168 are involved. Additionally, S. pyogenes features scpA15, SPy_0843, and cepA.” Moreover, the characteristics or properties of these proteins were also identified.
Conclusion: DGLA has a significant impact on virulence factors by interacting with various proteins from S. aureus, P. aeruginosa, and S. pyogenes, as evidenced by bioinformatics analysis.

     
Type of Study: Original Research Article | Subject: Microbial Bioinformatics
Received: 2024/12/12 | Accepted: 2025/03/13 | ePublished: 2025/03/30

References
1. Shakoor S, Warraich HJ, Zaidi AK. Infection Prevention and Control in the Tropics. Editor(s): Ryan ET, Hill DR, Solomon T, Aronson NE, Endy TP. In Hunter's Tropical Medicine and Emerging Infectious Diseases. 10th Ed. 2020. pp. 159-65. Cambridge, MA, United States: Elsevier Inc. [DOI:10.1016/B978-0-323-55512-8.00020-X] [PMCID]
2. Avire NJ, Whiley H, Ross K. A review of Streptococcus pyogenes: public health risk factors, prevention and control. Pathogens. 2021;10(2):248. [DOI:10.3390/pathogens10020248] [PMID] [PMCID]
3. Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):199. [DOI:10.1038/s41392-022-01056-1] [PMID] [PMCID]
4. Severn MM, Horswill AR. Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol. 2023;21(2):97-111. [DOI:10.1038/s41579-022-00780-3] [PMID] [PMCID]
5. Kuhn ML, Prachi P, Minasov G, Shuvalova L, Ruan J, Dubrovska I, et al. Structure and protective efficacy of the Staphylococcus aureus autocleaving protease EpiP. FASEB J. 2014;28(4):1780. [DOI:10.1096/fj.13-241737] [PMID] [PMCID]
6. Qu J, Cai Z, Liu Y, Duan X, Han S, Liu J, et al. Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer. Front Cell Infect Microbiol. 2021;11:641920. [DOI:10.3389/fcimb.2021.641920] [PMID] [PMCID]
7. Nath H, Khataniar A, Bania KK, Mukerjee N, Al-Hussain SA, Zaki ME, et al. Nano-functionalization and evaluation of antimicrobial activity of Tinospora cordifolia against the TolB protein of Pseudomonas aeruginosa-An antibacterial and computational study. Front Microbiol. 2023;14:1138106. [DOI:10.3389/fmicb.2023.1138106] [PMID] [PMCID]
8. Fischetti VA. M protein and other surface proteins on Streptococcus pyogenes. Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]. 2nd edition. 2022. Oklahoma, OK, United States: University of Oklahoma Health Sciences Center. (Accessed: Mar 30, 2025). Available from: [https://www.ncbi.nlm.nih.gov/books/NBK587116/]
9. Fongang H, Mbaveng AT, Kuete V. Global burden of bacterial infections and drug resistance. In Advances in Botanical Research. 2023. Vol. 106. pp. 1-20. Cambridge, MA, United States: Elsevier Inc. [DOI:10.1016/bs.abr.2022.08.001]
10. Nawan N, Isnaeni, Wasito EB. Antimicrobial activity of Streptomyces sp. isolated from acidic peatlands against extended spectrum beta lactamase (ESBL) producing Escherichia coli. Res J Pharm Technol. 2020;13(3):1121-6. [DOI:10.5958/0974-360X.2020.00206.1]
11. Nawan N, Handayani S. Molecular identification of Streptomyces sp. isolated from peat land of Palangka Raya, Kalimantan Tengah using 16S rRNA gene sequences analysis. Res J Pharm Technol. 2021;14(12):6639-44. [DOI:10.52711/0974-360X.2021.01147]
12. Chanthasena P, Hua Y, Rosyidah AL, Pathom-Aree W, Limphirat W, Nantapong N. Isolation and identification of bioactive compounds from Streptomyces actinomycinicus PJ85 and their in vitro antimicrobial activities against methicillin-resistant Staphylococcus aureus. Antibiotics. 2022;11(12):1797. [DOI:10.3390/antibiotics11121797] [PMID] [PMCID]
13. Kawashima H, Akimoto K, Higashiyama K, Fujikawa S, Shimizu S. Industrial production of dihomo‐γ‐linolenic acid by a Δ5 desaturase‐defective mutant of Mortierella alpina 1S‐4 Fungus. J Am Oil Chem' Soc. 2000;77(11):1135. [DOI:10.1007/s11746-000-0178-2]
14. Mustonen AM, Nieminen P. Dihomo-γ-linolenic acid (20: 3n-6)-Metabolism, derivatives, and potential significance in chronic inflammation. Int J Mol Sci. 2023;24(3):2116. [DOI:10.3390/ijms24032116] [PMID] [PMCID]
15. Desbois AP, Lawlor KC. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar Drugs. 2013;11(11):4544-57. [DOI:10.3390/md11114544] [PMID] [PMCID]
16. Grantina-Ievina L, Berzina A, Nikolajeva V, Mekss P, Muiznieks I. Production of fatty acids by Mortierella and Umbelopsis species isolated from temperate climate soils. Environ Exp Biol. 2014;12:15-27.
17. Szklarczyk D, Santos A, Von Mering C, Jensen LJ, Bork P, Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucl Acids Res. 2016;44(D1):D380-4. [DOI:10.1093/nar/gkv1277] [PMID] [PMCID]
18. Saha S, Raghava GP. VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genom Proteom Bioinform. 2006;4(1):42-7. [DOI:10.1016/S1672-0229(06)60015-6] [PMID]
19. Sharma A, Garg A, Ramana J, Gupta D. VirulentPred 2.0: an improved method for prediction of virulent proteins in bacterial pathogens. Protein Sci. 2023;32(12):e4808. [DOI:10.1002/pro.4808] [PMID] [PMCID]
20. Garg A, Gupta D. VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinform. 2008;9:1-2. [DOI:10.1186/1471-2105-9-62] [PMID] [PMCID]
21. Paysan-Lafosse T, Blum M, Chuguransky S, Grego T, Pinto BL, Salazar GA, et al. InterPro in 2022. Nucl Acids Res. 2023;51(D1):D418-27. [DOI:10.1093/nar/gkac993] [PMID] [PMCID]
22. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucl Acids Res. 2017;45(W1):W24-9. [DOI:10.1093/nar/gkx346] [PMID] [PMCID]
23. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26(13):1608-15. (Accessed: Mar 30, 2025). Available from: [https://psort.org/documentation/index.html] [DOI:10.1093/bioinformatics/btq249] [PMID] [PMCID]
24. Blum M, Andreeva A, Florentino LC, Chuguransky SR, Grego T, Hobbs E, et al. InterPro: the protein sequence classification resource in 2025. Nucl Acids Res. 2025;53(D1):D444-56. [DOI:10.1093/nar/gkae1082] [PMID] [PMCID]
25. Gardy JL, Laird MR, Chen F, Rey S, Walsh CJ, Ester M, et al. PSORTb v. 2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics. 2005;21(5):617-23. (Accessed: Mar 30, 2025). Available from: [https://www.psort.org/dataset/datasetv3.html] [DOI:10.1093/bioinformatics/bti057] [PMID]
26. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res. 1997;25(17):3389-402. [DOI:10.1093/nar/25.17.3389] [PMID] [PMCID]
27. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucl Acids Res. 2007;36(suppl_1):D480-4. [DOI:10.1093/nar/gkm882] [PMID] [PMCID]
28. Gonzalez MW, Kann MG. Chapter 4: Protein Interactions and Disease. PLoS Compu Biol. 2012;8(12):e1002819. [DOI:10.1371/journal.pcbi.1002819] [PMID] [PMCID]
29. Zhang YH, Huang F, Li J, Shen W, Chen L, Feng K, et al. Identification of Protein-Protein Interaction Associated Functions Based on Gene Ontology. Protein J. 2024;43(3):477-86. [DOI:10.1007/s10930-024-10180-6] [PMID]
30. Sen T, Verma NK. Functional annotation and curation of hypothetical proteins present in a newly emerged serotype 1c of Shigella flexneri: emphasis on selecting targets for virulence and vaccine design studies. Genes. 2020;11(3):340. [DOI:10.3390/genes11030340] [PMID] [PMCID]
31. Shahbaaz M, ImtaiyazHassan MD, Ahmad F. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PloS One. 2013;8(12):e84263. [DOI:10.1371/journal.pone.0084263] [PMID] [PMCID]
32. Dey S, Shahrear S, Afroj Zinnia M, Tajwar A, Islam AB. Functional annotation of hypothetical proteins from the Enterobacter cloacae B13 Strain and Its association with pathogenicity. Bioinform Biol Insights. 2022;16:11779322221115535. [DOI:10.1177/11779322221115535] [PMID] [PMCID]
33. Rahman MA, Heme UH, Parvez MA. In silico functional annotation of hypothetical proteins from the Bacillus paralicheniformis strain Bac84 reveals proteins with biotechnological potentials and adaptational functions to extreme environments. PloS One. 2022;17(10):e0276085. [DOI:10.1371/journal.pone.0276085] [PMID] [PMCID]
34. Wang X, Lin H, Gu Y. Multiple roles of dihomo-γ-linolenic acid against proliferation diseases. Lipids Health Dis. 2012;11:1-9. [DOI:10.1186/1476-511X-11-25] [PMID] [PMCID]
35. Moravec AR, Siv AW, Hobby CR, Lindsay EN, Norbash LV, Shults DJ, et al. Exogenous polyunsaturated fatty acids impact membrane remodeling and affect virulence phenotypes among pathogenic Vibrio species. Appl Environ Microbiol. 2017;83(22):e01415-17. [DOI:10.1128/AEM.01415-17] [PMID] [PMCID]
36. Novichkova E, Chumin K, Eretz-Kdosha N, Boussiba S, Gopas J, Cohen G, et al. DGLA from the microalga Lobosphaera Incsa P127 modulates inflammatory response, inhibits iNOS expression and alleviates NO secretion in RAW264. 7 murine macrophages. Nutrients. 2020;12(9):2892. [DOI:10.3390/nu12092892] [PMID] [PMCID]
37. Field D, Cotter PD, Hill C, Ross RP. Bioengineering lantibiotics for therapeutic success. Front Microbiol. 2015;6:1363. [DOI:10.3389/fmicb.2015.01363]
38. Elfadadny A, Ragab RF, AlHarbi M, Badshah F, Ibáñez-Arancibia E, Farag A, et al. Antimicrobial resistance of Pseudomonas aeruginosa: navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front Microbiol. 2024;15:1374466. [DOI:10.3389/fmicb.2024.1374466] [PMID] [PMCID]
39. Sjöholm K, Karlsson C, Linder A, Malmström J. A comprehensive analysis of the Streptococcus pyogenes and human plasma protein interaction network. Mol Biosyst. 2014;10(7):1698-708. [DOI:10.1039/C3MB70555B] [PMID]
40. Efthimiou G, Tsiamis G, Typas MA, Pappas KM. Transcriptomic adjustments of Staphylococcus aureus COL (MRSA) forming biofilms under acidic and alkaline conditions. Front Microbiol. 2019;10:2393. [DOI:10.3389/fmicb.2019.02393] [PMID] [PMCID]
41. Harkins CP, Pichon B, Doumith M, Parkhill J, Westh H, Tomasz A, et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 2017;18:1-11. [DOI:10.1186/s13059-017-1252-9] [PMID] [PMCID]
42. Zhang Y, Chen M, Bruner SD, Ding Y. Heterologous production of microbial ribosomally synthesized and post-translationally modified peptides. Front Microbiol. 2018;9:1801. [DOI:10.3389/fmicb.2018.01801] [PMID] [PMCID]
43. Ongey EL, Neubauer P. Lanthipeptides: chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb Cell Factories. 2016;15:1-6. [DOI:10.1186/s12934-016-0502-y] [PMID] [PMCID]
44. Singh M, Sareen D. Novel LanT associated lantibiotic clusters identified by genome database mining. PLoS One. 2014;9(3):e91352. [DOI:10.1371/journal.pone.0091352] [PMID] [PMCID]
45. Díaz-Pérez SP, Solis CS, López-Bucio JS, Valdez Alarcón JJ, Villegas J, Reyes-De la Cruz H, et al. Pathogenesis in Pseudomonas aeruginosa PAO1 biofilm-associated is dependent on the pyoverdine and pyocyanin siderophores by quorum sensing modulation. Microb Ecol. 2023;86(1):727-41. [DOI:10.1007/s00248-022-02095-5] [PMID]
46. Jung SH, Lee HC, Hwang HJ, Park HA, Moon YA, Kim BC, et al. Acyl-CoA thioesterase 7 is involved in cell cycle progression via regulation of PKCζ-p53-p21 signaling pathway. Cell Death Dis. 2017;8(5):e2793. [DOI:10.1038/cddis.2017.202] [PMID] [PMCID]
47. Wang X, Li ZM, Li Q, Shi M, Bao L, Xu D, et al. Purification and biochemical characterization of FrsA protein from Vibrio vulnificus as an esterase. PloS One. 2019;14(4):e0215084. [DOI:10.1371/journal.pone.0215084] [PMID] [PMCID]
48. Krishnamoorthy S, Steiger AK, Nelson WC, Egbert RG, Wright AT. An activity-based probe targeting the streptococcal virulence factor C5a peptidase. Chem Commun. 2022;58(58):8113-6. [DOI:10.1039/D2CC01517J] [PMID]
49. Silvestre A, Plaze A, Berthon P, Thibeaux R, Guillen N, Labruyère E. In Entamoeba histolytica, a BspA family protein is required for chemotaxis toward tumour necrosis factor. Microb Cell. 2015;2(7):235-46. [DOI:10.15698/mic2015.07.214] [PMID] [PMCID]
50. Ji D, Ma J, Xu M, Agyei D. Cell‐envelope proteinases from lactic acid bacteria: biochemical features and biotechnological applications. Compr Rev Food Sci Food Saf. 2021;20(1):369-400. [DOI:10.1111/1541-4337.12676] [PMID]
51. Yurina V, Adianingsih OR. Predicting epitopes for vaccine development using bioinformatics tools. Ther Adv Vaccines Immunother. 2022;10:25151355221100218. [DOI:10.1177/25151355221100218] [PMID] [PMCID]
52. Jebastin T, Abuthakir MS, Santhoshi I, Gnanaraj M, Gatasheh MK, Ahamed A, et al. Unveiling the mysteries: Functional insights into hypothetical proteins from Bacteroides fragilis 638R. Heliyon. 2024;10(11):e31713. [DOI:10.1016/j.heliyon.2024.e31713] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc