year 18, Issue 5 (September - October 2024)                   Iran J Med Microbiol 2024, 18(5): 319-328 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shafigh M, Izadi Amoli R, Pournajaf A, Yahyapour Y, Kaboosi H. The Relation Between Biofilm Formation and Alginate Production in Pseudomonas aeruginosa; An Important and Neglected Topic. Iran J Med Microbiol 2024; 18 (5) :319-328
URL: http://ijmm.ir/article-1-2474-en.html
1- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
2- Infectious Disease and Tropical Medicine Research Center, Health Research institute, Babol University of Medical Sciences, Babol, Iran , abazar_pournajaf@yahoo.com
3- Infectious Disease and Tropical Medicine Research Center, Health Research institute, Babol University of Medical Sciences, Babol, Iran
Abstract:   (565 Views)

Background and Aims: Pseudomonas aeruginosa (P. aeruginosa) is one of the most common opportunistic bacteria causing healthcare-associated infections (HAIs). Alginate as an adhesion substance plays role in its binding to inanimate surfaces and protecting against environmental conditions. Biofilm also increases the bacterial resistance to antimicrobials and immune system. The present study was aimed to survey the antimicrobial resistance pattern, biofilm formation, and alginate production in the clinical isolates of P. aeruginosa.
Materials and Methods: In this cross-sectional study in a period of one year 90 non-duplicative P. aeruginosa were isolated from the clinical samples. Antimicrobial susceptibility testing was performed by disk diffusion method. Biofilm formation and alginate production were measured by microtiter plate and carbazole assay, respectively. Polymerase chain reaction was conducted for detection of pslA, pelA, ppyR, algD, algU and algL genes.
Results: The highest resistance rate (74.4%) was related to ceftazidime. Alginate production was found in 87.8% of the isolates, which production levels were <250 µgml-1, 250-400 µgml-1, and >400 µgml-1 in 7.6%, 53.2%, and 39.2 of the isolates, respectively. The categories of biofilm formation in strains were as weak (11.1%), moderate (24.1%), and strong (64.8%). The prevalence of ppyR, algD, algU, algL, pslA and pelA genes were 100.0%, 92.2%, 86.6%, 67.7%, 85.2% and 42.5%, respectively.
Conclusion: The results highlighted an alarming trend in P. aeruginosa strains antibiotic resistance rates. A significant relationship was also observed between the alginate production and the biofilm formation. Thus, periodic monitoring, adherence to the antibiotic stewardship, avoiding arbitrary prescribing, and screening tests are unavoidable.

Full-Text [PDF 554 kb]   (162 Downloads) |   |   Full-Text (HTML)  (92 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2024/08/17 | Accepted: 2024/11/14 | ePublished: 2024/11/30

References
1. Rocha AJ, Barsottini MR, Rocha RR, Laurindo MV, Moraes FL, Rocha SL. Pseudomonas aeruginosa: virulence factors and antibiotic resistance genes. Braz J Med Biol Res. 2019;62:e19180503. [DOI:10.1590/1678-4324-2019180503]
2. Kaier K, Heister T, Götting T, Wolkewitz M, Mutters NT. Measuring the in-hospital costs of Pseudomonas aeruginosa pneumonia: methodology and results from a German teaching hospital. BMC Infect Dis. 2019;19:1-8. [DOI:10.1186/s12879-019-4660-5] [PMID] [PMCID]
3. Ammazzalorso A, Granese A, De Filippis B. Recent trends and challenges to overcome Pseudomonas aeruginosa infections. Expert Opin Ther Pat. 2024;34(6):493-509. [DOI:10.1080/13543776.2024.2348602]
4. Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm. 2023;5:100129. [DOI:10.1016/j.bioflm.2023.100129] [PMID] [PMCID]
5. Kothari A, Kherdekar R, Mago V, Uniyal M, Mamgain G, Kalia RB, et al. Age of Antibiotic Resistance in MDR/XDR Clinical Pathogen of Pseudomonas aeruginosa. Pharmaceuticals. 2023;16(9):1230. [DOI:10.3390/ph16091230] [PMID] [PMCID]
6. Thi MTT, Wibowo D, Rehm BH. Pseudomonas aeruginosa biofilms. Int J Mol Sci. 2020;21(22):8671. [DOI:10.3390/ijms21228671] [PMID] [PMCID]
7. Peng N, Cai P, Mortimer M, Wu Y, Gao C, Huang Q. The exopolysaccharide-eDNA interaction modulates 3D architecture of Bacillus subtilis biofilm. BMC Microbiol. 2020;20:115. [DOI:10.1186/s12866-020-01789-5] [PMID] [PMCID]
8. Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol. 2012;14(8):1913-28. [DOI:10.1111/j.1462-2920.2011.02657.x] [PMID] [PMCID]
9. Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GC, et al. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 2011;7(1):e1001264. [DOI:10.1371/journal.ppat.1001264] [PMID] [PMCID]
10. Hentzer M, Teitzel GM, Balzer GJ, Heydorn A, Molin S, Givskov M, et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol. 2001;183(18):5395-401. [DOI:10.1128/JB.183.18.5395-5401.2001] [PMID] [PMCID]
11. May TB, Chakrabarty A. Pseudomonas aeruginosa: genes and enzymes of alginate synthesis. Trends Microbiol. 1994;2(5):151-7. [DOI:10.1016/0966-842X(94)90664-5] [PMID]
12. Chung J, Eisha S, Park S, Morris AJ, Martin I. How three self-secreted biofilm exopolysaccharides of Pseudomonas aeruginosa, Psl, Pel, and alginate, can each be exploited for antibiotic adjuvant effects in cystic fibrosis lung infection. Int J Mol Sci. 2023;24(10):8709. [DOI:10.3390/ijms24108709] [PMID] [PMCID]
13. Blanco-Cabra N, Paetzold B, Ferrar T, Mazzolini R, Torrents E, Serrano L, et al. Characterization of different alginate lyases for dissolving Pseudomonas aeruginosa biofilms. Sci Rep. 2020;10(1):9390. [DOI:10.1038/s41598-020-66293-2] [PMID] [PMCID]
14. Abidi SH, Sherwani SK, Siddiqui TR, Bashir A, Kazmi SU. Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol. 2013;13:1-6. [DOI:10.1186/1471-2415-13-57] [PMID] [PMCID]
15. Ramazani R, Izadi Amoli R, Taghizadeh Armaki M, Pournajaf A, Kaboosi H. A molecular New Update on the Biofilm Production and Carbapenem Resistance Mechanisms in Clinical Pseudomonas aeruginosa Isolates. Iran J Med Microbiol. 2022;16(6):557-65. [DOI:10.30699/ijmm.16.6.557]
16. Davarzani F, Saidi N, Besharati S, Saderi H, Rasooli I, Owlia P. Evaluation of antibiotic resistance pattern, alginate and biofilm production in clinical isolates of Pseudomonas aeruginosa. Iran J Public Health. 2021;50(2):341. [DOI:10.18502/ijph.v50i2.5349] [PMID] [PMCID]
17. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J Clin Microbiol. 2021;59(12):10-128. [DOI:10.1128/JCM.00213-21] [PMID] [PMCID]
18. Pournajaf A, Razavi S, Irajian G, Ardebili A, Erfani Y, Solgi S, et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez Med. 2018;26(3):226-36.
19. Karlowsky JA, Wise MG, Hsieh T-C, Lu H-C, Chen W-T, Cheng M-H, et al. Temporal and geographical prevalence of carbapenem-resistant Pseudomonas aeruginosa and the in vitro activity of ceftolozane/tazobactam and comparators in Taiwan-SMART 2012-2021. J Glob Antimicrob Resist. 2023;34:106-12. [DOI:10.1016/j.jgar.2023.06.013] [PMID]
20. Vaez H, Salehi-Abargouei A, Ghalehnoo ZR, Khademi F. Multidrug resistant Pseudomonas aeruginosa in Iran: A systematic review and metaanalysis. J Glob Infect Dis. 2018;10(4):212-7. [DOI:10.4103/jgid.jgid_113_17] [PMID] [PMCID]
21. Malik MA, Wani MY, Hashmi AA. Chapter 1 - Combination therapy: Current status and future perspectives. In Combination Therapy Against Multidrug Resistance. 2020. pp. 1-38. New York, United States: Academic press. [DOI:10.1016/B978-0-12-820576-1.00001-1]
22. Lai X, Han M-L, Ding Y, Chow SH, Le Brun AP, Wu C-M, et al. A polytherapy based approach to combat antimicrobial resistance using cubosomes. Nat Commun. 2022;13(1):343. [DOI:10.1038/s41467-022-28012-5] [PMID] [PMCID]
23. Ghadaksaz A, Fooladi AAI, Hosseini HM, Amin M. The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J Appl Biomed. 2015;13(1):61-8. [DOI:10.1016/j.jab.2014.05.002]
24. Valadbeigi H, Sadeghifard N, Rafiei Tabatabaei R, Maleki A. A study on the frequency of toxin A, alginate genes, and of clinical Pseudomonas aeroginosa strains. J Ilam Univ Med Sci. 2012;20(1):58-64.
25. Elogne CK, N'Guetta A, Yeo A, David C, Guessennd N, Anné JC, et al. Prevalence of Pseudomonas aeruginosa's virulence genes isolated from human infection in Abidjan, Côte d'Ivoire. Microbiol Res J Int. 2018;25(1):1-8. [DOI:10.9734/MRJI/2018/44475]
26. Rajabi H, Salimizand H, Khodabandehloo M, Fayyazi A, Ramazanzadeh R. Prevalence of algD, pslD, pelF, Ppgl, and PAPI-1 genes involved in biofilm formation in clinical Pseudomonas aeruginosa strains. Biomed Res Int. 2022;2022(1):1716087. [DOI:10.1155/2022/1716087] [PMID] [PMCID]
27. Skariyachan S, Sridhar VS, Packirisamy S, Kumargowda ST, Challapilli SB. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiologica. 2018;63:413-32. [DOI:10.1007/s12223-018-0585-4] [PMID]
28. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis. 2011;15:305-11. https://doi.org/10.1016/S1413-8670(11)70197-0 [DOI:10.1590/S1413-86702011000400002] [PMID]
29. Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. J Pathol Microbiol Immunol. 2007;115(8):891-9. [DOI:10.1111/j.1600-0463.2007.apm_630.x] [PMID]
30. Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res Notes. 2020;13:1-6. [DOI:10.1186/s13104-020-4890-z] [PMID] [PMCID]
31. Soleymani-Fard Z, Hassanshahian M, Jasim SA, Abdelbasset WK, Shichiyakh RA, Hussein BA, et al. Screening of pslA and pelB Biofilm-Producing Genes from Pseudomonas Isolated from Clinical Samples. Proc Natl Acad Sci India Sect B Biol Sci. 2024;94:519-25. [DOI:10.1007/s40011-024-01547-x]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc