year 18, Issue 3 (May - June 2024)                   Iran J Med Microbiol 2024, 18(3): 200-208 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Raheem Hassooni H, Ibrahim Ahmed R, M. Alzubaidy Z, Hassan Alhusseiny A. Isolation and Molecular Identification of Acinetobacter baumannii From Urinary Tract Infection in Diyala Province, Iraq. Iran J Med Microbiol 2024; 18 (3) :200-208
URL: http://ijmm.ir/article-1-2399-en.html
1- Department of Internal Medicine, College of Medicine, University of Diyala, Diyala, Iraq , hanan.hassouni@uodiyala.edu.iq
2- Department of Biology, College of Science, University of Diyala, Diyala, Iraq
3- Department of Internal Medicine, College of Medicine, University of Diyala, Diyala, Iraq
Abstract:   (742 Views)

Background and Aim: Acinetobacter baumannii is one of the most prominent opportunistic bacterial pathogens associated with hospital-acquired infections and has been associated with antibiotic resistance. The high rates of resistance have made it difficult to choose the appropriate treatment and put the lives of infected patients at risk of death. This study aimed to isolate A. baumannii from urinary tract infections (UTI) and detect the bacterial ability to form biofilms from clinical samples.
Materials and Methods: In this study, A. baumannii bacteria were isolated from several sources (UTI). The microtiter plate method revealed biofilm formation. Clinical specimens were grown on selective media. The A. baumannii was identified by classical techniques; the VITECK combined 2 system and 16S rRNA gene amplification.
Results: From the 130 suspected isolates, 20 isolates were obtained from A. baumannii multidrug-resistant (MDR) and extensively drug-resistant (XDR) types. Among them, 14 (70%) were MDR and 6 (30%) were XDR types.
Conclusion: Acinetobacter baumannii, Antibiotic Resistant, Biofilm, Extensively drug-resistant, Multidrug-resistant.

Full-Text [PDF 557 kb]   (363 Downloads) |   |   Full-Text (HTML)  (202 Views)  
Type of Study: Original Research Article | Subject: Antibiotic Resistance
Received: 2024/04/24 | Accepted: 2024/08/8 | ePublished: 2024/08/18

References
1. Narjis MA, Mahdi MS. Isolation and identification of multi-drug resistance Acinetobacter baumannii isolated from clinical samples at Baghdad, Iraq. J Appl Nat Sci. 2023;15(2):663-71. [DOI:10.31018/jans.v15i2.4499]
2. Taitt CR, Leski TA, Stockelman MG, Craft DW, Zurawski DV, Kirkup BC, et al. Antimicrobial resistance determinants in Acinetobacter baumannii isolates taken from military treatment facilities. Antimicrob Agents Chemother. 2014;58(2):767-81. [DOI:10.1128/AAC.01897-13] [PMID] [PMCID]
3. Lysitsas M, Triantafillou E, Chatzipanagiotidou I, Antoniou K, Valiakos G. Antimicrobial Susceptibility Profiles of Acinetobacter baumannii Strains, Isolated from Clinical Cases of Companion Animals in Greece. Vet Sci. 2023;10(11):365. [DOI:10.3390/vetsci10110635] [PMID] [PMCID]
4. Farshadzadeh Z, Hashemi FB, Rahimi S, Pourakbari B, Esmaeili D, Haghighi MA, et al. Wide distribution of carbapenem resistant Acinetobacter baumannii in burns patients in Iran. Front Microbiol. 2015;6:1146. [DOI:10.3389/fmicb.2015.01146] [PMID] [PMCID]
5. Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother. 2006;50(12):4114-23. [DOI:10.1128/AAC.00778-06] [PMID] [PMCID]
6. Brown NG, Horton LB, Huang W, Vongpunsawad S, Palzkill T. Analysis of the functional contributions of Asn233 in metallo-β-lactamase IMP-1. Antimicrob Agents Chemother. 2011;55(12):5696-702. [DOI:10.1128/AAC.00340-11] [PMID] [PMCID]
7. Noori M, Karimi A, Fallah F, Hashemi A, Alimehr S, Goudarzi H, et al. High Prevalence of Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated From Two Hospitals of Tehran, Iran. Arch Pediatr Infect Dis. 2014;2(3):e15439. [DOI:10.5812/pedinfect.15439]
8. Eze EC, Chenia HY, El Zowalaty ME. Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infect Drug Resist. 2018;11:2277-99. [DOI:10.2147/IDR.S169894] [PMID] [PMCID]
9. Meshkat Z, Salimizand H, Amini Y, Khakshoor M, Mansouri D, Farsiani H, et al. Molecular characterization and genetic relatedness of clinically Acinetobacter baumanii isolates conferring increased resistance to the first and second generations of tetracyclines in Iran. Ann Clin Microbiol Antimicrob. 2017;16(1):51. [DOI:10.1186/s12941-017-0226-9] [PMID] [PMCID]
10. Li YJ, Pan CZ, Fang CQ, Zhao ZX, Chen HL, Guo PH, et al. Pneumonia caused by extensive drug-resistant Acinetobacter baumannii among hospitalized patients: genetic relationships, risk factors and mortality. BMC Infect Dis. 2017;17(1):371. [DOI:10.1186/s12879-017-2471-0] [PMID] [PMCID]
11. Cheesbrough M. District Laboratory Practice in Tropical Countries. 2005. Part 1, 2nd ed. Cambridge, U.K.: Cambridge University Press. [DOI:10.1017/CBO9780511581304]
12. Berkowitz FE, Jerris RC. Practical Medical Microbiology for Clinicians. 2016. New York, U.S.: John Wiley & Sons. [DOI:10.1002/9781119066767]
13. Bakkali ME, Chaoui I, Zouhdi M, Melloul M, Arakrak A, Mzibri ME. Comparison of the conventional technique and 16s rDNA gene sequencing method in identification of clinical and hospital environmental isolates in Morocco. Afr J Mircobiol Res. 2013;7:5637-44. [DOI:10.5897/AJMR2013.5686]
14. Fontana C, Favaro M, Pelliccioni M, Pistoia ES, Favalli C. Use of the MicroSeq 500 16S rRNA gene-based sequencing for identification of bacterial isolates that commercial automated systems failed to identify correctly. J Clin Microbiol. 2005;43(2):615-9. [DOI:10.1128/JCM.43.2.615-619.2005] [PMID] [PMCID]
15. Gherardi G, Creti R, Pompilio A, Di Bonaventura G. An overview of various typing methods for clinical epidemiology of the emerging pathogen Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis. 2015;81(3):219-26. [DOI:10.1016/j.diagmicrobio.2014.11.005] [PMID]
16. Silbert S, Pfaller MA, Hollis RJ, Barth AL, Sader HS. Evaluation of Three Molecular Typing Techniques for Nonfermentative Gram-Negative Bacilli. Infect Control. 2004;25(10):847-51. [DOI:10.1086/502307] [PMID]
17. Aljindan R, Alsamman K, Elhadi N. ERIC-PCR Genotyping of Acinetobacter baumannii Isolated from Different Clinical Specimens. Saudi J Med Med Sci. 2018;6(1):13-7. [DOI:10.4103/sjmms.sjmms_138_16] [PMID] [PMCID]
18. Abbey TC, Deak E. What's New from the CLSI Subcommittee on Antimicrobial Susceptibility Testing M100, 29th Edition. Clin Microbiol Newsl. 2019;41(23):203-9. [DOI:10.1016/j.clinmicnews.2019.11.002]
19. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of Changes to the Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st Edition. J Clin Microbiol. 2021;59(12):e0021321. [DOI:10.1128/JCM.00213-21] [PMID] [PMCID]
20. Moosavian M, Emam N. The first report of emerging mobilized colistin-resistance (mcr) genes and ERIC-PCR typing in Escherichia coli and Klebsiella pneumoniae clinical isolates in southwest Iran. Infect Drug Resist. 2019;12:1001-10. [DOI:10.2147/IDR.S192597] [PMID] [PMCID]
21. Bajpai T, Bhatambare GS, Varma M, Pandey M. Species-level identification of Acinetobacter by 16s rRNA sequencing: Necessity today, essentiality tomorrow. New Niger J Clin Res. 2016;5(8):55. [DOI:10.4103/2250-9658.197438]
22. Hassooni HR, Jasim HM, Farhan AA, Alhusseiny AH. Detection of Tn917 Carrying erm (B) Gene in a Clinical Isolates of S. pyogenes. Indian J Public Health Res Dev. 2019;10(10):2380. [DOI:10.5958/0976-5506.2019.03215.7]
23. Rawat D, Nair D. Extended-spectrum β-lactamases in Gram Negative Bacteria. J Glob Infect Dis. 2010;2(3):263-74. [DOI:10.4103/0974-777X.68531] [PMID] [PMCID]
24. Kyriakidis I, Vasileiou E, Pana ZD, Tragiannidis A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens. 2021;10(3):373. [DOI:10.3390/pathogens10030373] [PMID] [PMCID]
25. Abdi SN, Ghotaslou R, Ganbarov K, Mobed A, Tanomand A, Yousefi M, et al. Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infect Drug Resist. 2020;13:423-34. [DOI:10.2147/IDR.S228089] [PMID] [PMCID]
26. Basak S, Singh P, Rajurkar M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. J Pathog. 2016;2016:4065603. [DOI:10.1155/2016/4065603] [PMID] [PMCID]
27. Kadri SS. Key Takeaways From the U.S. CDC's 2019 Antibiotic Resistance Threats Report for Frontline Providers. Crit Care Med. 2020;48(7):939-45. [DOI:10.1097/CCM.0000000000004371] [PMID] [PMCID]
28. Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev. 2018;31(4):e00088-17. [DOI:10.1128/CMR.00088-17] [PMID] [PMCID]
29. Noel HR, Petrey JR, Palmer LD. Mobile genetic elements in Acinetobacter antibiotic-resistance acquisition and dissemination. Ann N Y Acad Sci. 2022;1518(1):166-82. [DOI:10.1111/nyas.14918] [PMID] [PMCID]
30. Sobouti B, Mirshekar M, Fallah S, Tabaei A, Fallah Mehrabadi J, Darbandi A. Pan drug-resistant Acinetobacter baumannii causing nosocomial infections among burnt children. Med J Islam Repub Iran. 2020;34:24. [DOI:10.34171/mjiri.34.24] [PMID] [PMCID]
31. Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167-93. [DOI:10.1128/CMR.15.2.167-193.2002] [PMID] [PMCID]
32. Mendhe S, Badge A, Ugemuge S, Chandi D. Impact of Biofilms on Chronic Infections and Medical Challenges. Cureus. 2023;15(11):e48204. [DOI:10.7759/cureus.48204] [PMID] [PMCID]
33. Crabbé A, Jensen PØ, Bjarnsholt T, Coenye T. Antimicrobial Tolerance and Metabolic Adaptations in Microbial Biofilms. Trends Microbiol. 2019;27(10):850-63. [DOI:10.1016/j.tim.2019.05.003] [PMID]
34. Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018;4(3):482-501. [DOI:10.3934/microbiol.2018.3.482] [PMID] [PMCID]
35. Grooters KE, Ku JC, Richter DM, Krinock MJ, Minor A, Li P, et al. Strategies for combating antibiotic resistance in bacterial biofilms. Front Cell Infect Microbiol. 2024;14:1352273. [DOI:10.3389/fcimb.2024.1352273] [PMID] [PMCID]
36. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322-32. [DOI:10.1016/j.ijantimicag.2009.12.011] [PMID]
37. Bowler P, Murphy C, Wolcott R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob Resist Infect Control. 2020;9(1):162. [DOI:10.1186/s13756-020-00830-6] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc