year 17, Issue 3 (May - June 2023)                   Iran J Med Microbiol 2023, 17(3): 329-338 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vaez M, Kazemimejad N, Fallah Mehrabadi J. Rapid SARS-CoV-2 RT-LAMP Assay Setup using Gene Construct Design Approach. Iran J Med Microbiol 2023; 17 (3) :329-338
URL: http://ijmm.ir/article-1-1866-en.html
1- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran , vaez_m@yahoo.com
2- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
3- The Lister Laboratory of Microbiology, Tehran, Iran
Abstract:   (1783 Views)

Background and Aim: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still an ongoing challenge in health system worldwide. Molecular detection methods including reverse transcription loop-mediated isothermal amplification (RT-LAMP) can help cutting off the transmission chain of the virus. In this study, prompt setting up of the RT-LAMP assays were investigated using gene construct design approach.
Materials and Methods: RT-LAMP assays were initially setup and optimized using gene constructs as positive controls which worked simultaneously for RT-LAMP and RT-PCR assays. Constructed genes included T7 promoter sequence and partial sequences of SARS-CoV-2 RdRp, N and E genes cloned into pUC57 multiple cloning site (MCS) via synthetic and subcloning procedures. These templates were then used for artificial RNA synthesis. Finally, the RT-LAMP assay parameters were optimized and applied to clinical RNA specimens.
Results: As an initial rapid approach, RT-LAMP assays were successfully setup for SARS-CoV-2 diagnostic using in vitro RNA transcripts from gene constructs. The assays were then examined on clinical samples with reaction times of 35 and 40 min required for assay one and two respectively. The detection limit was 100 copies of the target gene per reaction for each assay.
Conclusion: Here, prompt setting up of RT-LAMP assays was carried out initially on designed gene constructs containing different SARS-CoV-2 target genes and simultaneous validation by RT-PCR. This approach could be used as an efficient solution where the clinical specimens may not initially be available, with the feasibility for new target gene of interest to be inserted into the MCS position.

Full-Text [PDF 803 kb]   (466 Downloads) |   |   Full-Text (HTML)  (337 Views)  
Type of Study: Original Research Article | Subject: Molecular Microbiology
Received: 2022/08/18 | Accepted: 2022/09/28 | ePublished: 2023/06/26

References
1. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG. A novel coronavirus associated with human respiratory disease in China. Nature. 2020;579:265-9. [DOI:10.1038/s41586-020-2008-3] [PMID] [PMCID]
2. Dawood FS, Iuliano AD, Reed C, Meltzer MI, Shay DK, Cheng P-Y, et al. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. Lancet Infect Dis. 2012;12(9):687-95. [DOI:10.1016/S1473-3099(12)70121-4] [PMID]
3. Peiris JS, Yuen KY, Osterhaus AD, Stöhr K. The Severe Acute Respiratory Syndrome. N Engl J Med. 2003;349(25):2431-41. [DOI:10.1056/NEJMra032498] [PMID]
4. Weiss Susan R. Coronavirus Pathogenesis and the Emerging Pathogen Severe Acute Respiratory Syndrome Coronavirus. Microbiol Mol Biol Rev. 2005;69(4):635-64. [DOI:10.1128/MMBR.69.4.635-664.2005] [PMID] [PMCID]
5. Lu L, Liu Q, Du L, Jiang S. Middle East respiratory syndrome coronavirus (MERS-CoV): challenges in identifying its source and controlling its spread. Microbes Infect. 2013;15(8-9):625-9. [DOI:10.1016/j.micinf.2013.06.003] [PMID] [PMCID]
6. Ar P. A Literature Review of Zika Virus. Emerg Infect Dis. 2016;22(7):1185-92. [DOI:10.3201/eid2207.151990] [PMID] [PMCID]
7. Broadhurst MJ, Brooks TJG, Pollock NR. Diagnosis of Ebola Virus Disease: Past, Present, and Future. Clin Microbiol Rev. 2016;29(4):773-93. [DOI:10.1128/CMR.00003-16] [PMID] [PMCID]
8. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536-44. [DOI:10.1038/s41564-020-0695-z] [PMID] [PMCID]
9. Caruana G, Croxatto A, Coste AT, Opota O, Lamoth F, Jaton K, et al. Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clin Microbiol Infect. 2020;26(9):1178-82. [DOI:10.1016/j.cmi.2020.06.019] [PMID] [PMCID]
10. Dutta D, Naiyer S, Mansuri S, Soni N, Singh V, Bhat KH, et al. COVID-19 Diagnosis: A Comprehensive Review of the RT-qPCR Method for Detection of SARS-CoV-2. Diagnostics. 2022;12(6):1503. [DOI:10.3390/diagnostics12061503] [PMID] [PMCID]
11. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):e63. [DOI:10.1093/nar/28.12.e63] [PMID] [PMCID]
12. Notomi T, Mori Y, Tomita N, Kanda H. Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol. 2015;53(1):1-5. [DOI:10.1007/s12275-015-4656-9] [PMID]
13. Savonnet M, Aubret M, Laurent P, Roupioz Y, Cubizolles M, Buhot A. Kinetics of Isothermal Dumbbell Exponential Amplification: Effects of Mix Composition on LAMP and Its Derivatives. Biosensors. 2022;12(5):346. [DOI:10.3390/bios12050346] [PMID] [PMCID]
14. Abdulmawjood A, Roth S, Bülte M. Two methods for construction of internal amplification controls for the detection of Escherichia coli O157 by polymerase chain reaction. Mol Cell Probes. 2002;16(5):335-9. [DOI:10.1006/mcpr.2002.0431] [PMID]
15. Das A, Spackman E, Senne D, Pedersen J, Suarez DL. Development of an internal positive control for rapid diagnosis of avian influenza virus infections by real-time reverse transcription-PCR with lyophilized reagents. J Clin Microbiol. 2006;44(9):3065-73. [DOI:10.1128/JCM.00639-06] [PMID] [PMCID]
16. Dingle KE, Crook D, Jeffery K. Stable and Noncompetitive RNA Internal Control for Routine Clinical Diagnostic Reverse Transcription-PCR. J Clin Microbiol. 2004;42(3):1003-11. [DOI:10.1128/JCM.42.3.1003-1011.2004] [PMID] [PMCID]
17. Donia D, Divizia M, Pana A. Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR. J Virol Methods. 2005;126(1-2):157-63. [DOI:10.1016/j.jviromet.2005.02.004] [PMID]
18. Yan W, Zheng Y, Zeng X, He B, Cheng W. tructural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther. 2022;7(1):26. [DOI:10.1038/s41392-022-00884-5] [PMID] [PMCID]
19. Corman V, Bleicker T, Brünink S, Drosten C, Landt O, Koopmans M. Diagnostic Detection of 2019-nCoV by Real-Time RT-RCR incl. World Health Organ. 2020;17:1-3.
20. Fallah MJ, Akbari B, Saeidi NA, Karimi M, Vaez M, Zeyn AM, et al. Overexpression of recombinant human granulocyte colony-stimulating factor in E. coli. Iran J Med Sci. 2003;28(3):131-4.
21. Rozen S, Skaletsky HJ. Methods in molecular biology. Bioinformatics Methods and Protocols Totowa, NJ, Humana2000. p. 365-86.
22. Centers for Disease Control and Prevention. SARS-CoV-2 variant classifications and definitions. 2023.
23. Bath C, Scott M, Sharma PM, Gurung RB, Phuentshok Y, Pefanis S, et al. Further development of a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of foot-and-mouth disease virus and validation in the field with use of an internal positive control. Transbound Emerg Dis. 2020;67(6):2494-506. [DOI:10.1111/tbed.13589] [PMID]
24. Brey BJ, Radcliff RP, Clark Jr DL, Ellingson JLE. Design and development of an internal control plasmid for the detection of Mycobacterium avium subsp. paratuberculosis using real-time PCR. Mol Cell Probes. 2006;20(1):51-9. [DOI:10.1016/j.mcp.2005.09.005] [PMID]
25. Cho H, Jung YH, Cho HB, Kim H-t, Kim K-s. Positive control synthesis method for COVID-19 diagnosis by one-step real-time RT-PCR. Clin Chim Acta. 2020;511:149-53. [DOI:10.1016/j.cca.2020.10.001] [PMID] [PMCID]
26. Kurosaki Y, Takada A, Ebihara H, Grolla A, Kamo N, Feldmann H, et al. Rapid and simple detection of Ebola virus by reverse transcription-loop-mediated isothermal amplification. J Virol Methods. 2007;141(1):78-83. [DOI:10.1016/j.jviromet.2006.11.031] [PMID]
27. Song J, El-Tholoth M, Li Y, Graham-Wooten J, Liang Y, Li J, et al. Single- and Two-Stage, Closed-Tube, Point-of-Care, Molecular Detection of SARS-CoV-2. Anal Chem. 2021;93(38):13063-71. [DOI:10.1021/acs.analchem.1c03016] [PMID] [PMCID]
28. Lamb LE, Bartolone SN, Ward E, Chancellor MB. Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. PloS One. 2020;15(6):e0234682. [DOI:10.1371/journal.pone.0234682] [PMID] [PMCID]
29. Lu R, Wu X, Wan Z, Li Y, Jin X, Zhang C. A Novel Reverse Transcription Loop-Mediated Isothermal Amplification Method for Rapid Detection of SARS-CoV-2. Int J Mol Sci. 2020;21(8):2826. [DOI:10.3390/ijms21082826] [PMID] [PMCID]
30. Huang WE, Lim B, Hsu C-C, Xiong D, Wu W, Yu Y, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb Biotechnol. 2020;13(4):950-61. [DOI:10.1111/1751-7915.13586] [PMID] [PMCID]
31. Baek YH, Um J, Antigua KJC, Park J-H, Kim Y, Oh S, et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerg Microbes Infect. 2020;9(1):998-1007. [DOI:10.1080/22221751.2020.1756698] [PMID] [PMCID]
32. Janíková M, Hodosy J, Boor P, Klempa B, Celec P. Loop‐mediated isothermal amplification for the detection of SARS‐CoV‐2 in saliva. Microb Biotechnol. 2021;14(1):307-16. [DOI:10.1111/1751-7915.13737] [PMID] [PMCID]
33. Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis. 2020;20(4):411-2. [DOI:10.1016/S1473-3099(20)30113-4] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc