year 17, Issue 2 (March - April 2023)                   Iran J Med Microbiol 2023, 17(2): 230-242 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Suchi T A, Mishu I D, Akhter M Z, Hoque M M. Comparative Antimicrobial Efficacy, Kinetic Destruction Pattern and Microbial Inactivation Dynamics of Extracted Cinnamon Essential Oil and Commercial Cinnamaldehyde against Foodborne Pathogens. Iran J Med Microbiol 2023; 17 (2) :230-242
1- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
2- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh ,
Abstract:   (743 Views)

Background and Aim: The increasing demand for the discovery of next-generation antimicrobials necessitates the use of plant extracts as alternatives. This study investigates the antibacterial efficacy of extracted cinnamon essential oil (CEO) and commercial cinnamaldehyde (CN) against foodborne pathogens.
Materials and Methods: Kirby-Bauer disc diffusion method was used to screen the antimicrobial potency of CEO and CN. MIC and MBC were determined by the broth microdilution method. Kinetic destruction pattern was studied by time killing assay. CEO and CN mediated inactivation dynamics of S. typhimurium (ALM40) and L. monocytogenes were studied on the ground chicken meat model.
Results: Both CEO and CN showed remarkable antimicrobial efficacy against the test strains, with highest and lowest efficacy against V. metschnikovii and E. coli, respectively. The agents inhibited gram-positive and negative bacteria equally. CN showed higher efficacy than CEO although the results were very close. MIC of CEO and CN ranged from 0.625%-5% (v/v) and 0.078%-0.3125% (v/v), respectively. Heat treatment and pH alteration did not hamper the antibacterial potency of CEO. CEO and CN mediated destruction kinetics were faster in L. monocytogenes than S. typhimurium (ALM 40). Inactivation dynamics study showed CEO and CN to have slightly dose-dependent antimicrobial effects. Besides, storage conditions and time did not reduce the antimicrobial potency. The significant microbial reduction was observed in both CEO and CN treated meat samples than untreated controls. Notably, a complete reduction of viable count in meat model was observed in selective medium just after 24hrs storage.
Conclusion: Both CEO and CN showed promising antimicrobial effects to be used in combating foodborne pathogens.

Full-Text [PDF 796 kb]   (388 Downloads) |   |   Full-Text (HTML)  (255 Views)  
Type of Study: Original Research Article | Subject: Food Microbiology
Received: 2022/08/17 | Accepted: 2022/12/23 | ePublished: 2023/03/30

1. WHO. Estimating the burden of foodborne diseases 2022 [Available from:
2. Kmietowicz Z. Few novel antibiotics in the pipeline, WHO warns. Br Med J. 2017;358. [DOI:10.1136/bmj.j4339] [PMID]
3. Tajkarimi M, Ibrahim SA, Cliver D. Antimicrobial herb and spice compounds in food. Food control. 2010;21(9):1199-218. [DOI:10.1016/j.foodcont.2010.02.003]
4. Akthar MS, Degaga B, Azam T. Antimicrobial activity of essential oils extracted from medicinal plants against the pathogenic microorganisms: A review. Issues Biol Sci Pharm Res. 2014;2350:1588.
5. Rahmani F, Rezaeian-Doloei R, Alimoradi L. Evaluation of Phytochemical Composition of Mentha pulegium L. Essential Oil and Its Antibacterial Activity against Several Pathogenic Bacteria. Iran J Microbiol. 2018;11(6):167-77.
6. Anthony J-P, Fyfe L, Smith H. Plant active components-a resource for antiparasitic agents? Trends Parasitol. 2005;21(10):462-8. [DOI:10.1016/] [PMID]
7. Prajapati V, Tripathi A, Aggarwal K, Khanuja S. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol. 2005;96(16):1749-57. [DOI:10.1016/j.biortech.2005.01.007] [PMID]
8. Sökmen M, Serkedjieva J, Daferera D, Gulluce M, Polissiou M, Tepe B, et al. In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J Agric Food Chem. 2004;52(11):3309-12. [DOI:10.1021/jf049859g] [PMID]
9. Yazdani M. Evaluation of Antimicrobial and Antioxidant Activity of Essential Oil of Mentha piperita L. Iran J Med Microbiol. 2019;13(3):210-9. [DOI:10.30699/ijmm.13.3.210]
10. Sangal A. Role of cinnamon as beneficial antidiabetic food adjunct: a review. Adv Appl Sci Res. 2011;2(4):440-50.
11. Al-Bayati FA, Mohammed MJ. Isolation, identification, and purification of cinnamaldehyde from Cinnamomum zeylanicum bark oil. An antibacterial study. Pharm Biol. 2009;47(1):61-6. [DOI:10.1080/13880200802430607]
12. Kumar S, Kumari R. Cinnamomum: Review article of essential oil compounds, ethnobotany, antifungal and antibacterial effects. Open Access J Sci. 2019;3:13-6. [DOI:10.15406/oajs.2019.03.00121]
13. Liu L, Wei F-x, Qu Z-y, Wang S-q, Chen G, Gao H, et al. The antiadenovirus activities of cinnamaldehyde in vitro. Lab Med. 2009;40(11):669-74. [DOI:10.1309/LMF0U47XNDKBZTRQ]
14. Prasanth D, Murahari M, Chandramohan V, Panda SP, Atmakuri LR, Guntupalli C. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. J Biomol Struct Dyn. 2020;39(13):1-15. [DOI:10.1080/07391102.2020.1779129] [PMID] [PMCID]
15. El Atki Y, Aouam I, El Kamari F, Taroq A, Nayme K, Timinouni M, et al. Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. J Adv Pharm Technol Res. 2019;10(2):63. [DOI:10.4103/japtr.JAPTR_366_18] [PMID] [PMCID]
16. Shan B, Cai Y-Z, Brooks JD, Corke H. Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J Agric Food Chem. 2007;55(14):5484-90. [DOI:10.1021/jf070424d] [PMID]
17. Xing Y, Li X, Xu Q, Yun J, Lu Y. Antifungal activities of cinnamon oil against Rhizopus nigricans, Aspergillus flavus and Penicillium expansum in vitro and in vivo fruit test. Int J Food Sci Technol. 2010;45(9):1837-42. [DOI:10.1111/j.1365-2621.2010.02342.x]
18. Vasconcelos N, Croda J, Simionatto S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb Pathog. 2018;120:198-203. [DOI:10.1016/j.micpath.2018.04.036] [PMID]
19. Zhang D, Dong Q, Ross T. Inactivation kinetics of Vibrio parahaemolyticus on sand shrimp (Metapenaeus ensis) by cinnamaldehyde at 4° C. J Food Qual. 2017;2017. [DOI:10.1155/2017/5767925]
20. Khaleque M, Keya C, Hasan K, Hoque M, Inatsu Y, Bari M. Use of cloves and cinnamon essential oil to inactivate Listeria monocytogenes in ground beef at freezing and refrigeration temperatures. LWT. 2016;74:219-23. [DOI:10.1016/j.lwt.2016.07.042]
21. Hoque MM, Bari M, Juneja V, Kawamoto S. Antimicrobial activity of cloves and cinnamon extracts against food borne pathogens and spoilage bacteria and inactivation of Listeria monocytogenes in ground chicken meat with their essential oils. Food Res Inst. 2008;72:9-21.
22. Manu D, Mendonca AF, Daraba A, Dickson JS, Sebranek J, Shaw A, et al. Antimicrobial efficacy of cinnamaldehyde against Escherichia coli O157: H7 and Salmonella enterica in carrot juice and mixed berry juice held at 4 C and 12 C. Foodborne Pathog Dis. 2017;14(5):302-7. [DOI:10.1089/fpd.2016.2214] [PMID]
23. Yossa N, Patel J, Millner P, Lo M. Inactivation of Salmonella in organic soil by cinnamaldehyde, eugenol, ecotrol, and sporan. Foodborne Pathog Dis. 2011;8(2):311-7. [DOI:10.1089/fpd.2010.0685] [PMID]
24. Won G, Lee JH. Salmonella Typhimurium, the major causative agent of foodborne illness inactivated by a phage lysis system provides effective protection against lethal challenge by induction of robust cell-mediated immune responses and activation of dendritic cells. Vet Res. 2017;48(1):66. [DOI:10.1186/s13567-017-0474-x] [PMID] [PMCID]
25. DiMarzio M, Shariat N, Kariyawasam S, Barrangou R, Dudley EG. Antibiotic resistance in Salmonella enterica serovar Typhimurium associates with CRISPR sequence type. Antimicrob Agents Chemother. 2013;57(9):4282-9. [DOI:10.1128/AAC.00913-13] [PMID] [PMCID]
26. Wang X, Biswas S, Paudyal N, Pan H, Li X, Fang W, et al. Antibiotic resistance in Salmonella Typhimurium isolates recovered from the food chain through National Antimicrobial Resistance Monitoring System between 1996 and 2016. Front Microbiol. 2019;10:985. [DOI:10.3389/fmicb.2019.00985] [PMID] [PMCID]
27. Reda WW, Abdel-Moein K, Hegazi A, Mohamed Y, Abdel-Razik K. Listeria monocytogenes: An emerging food-borne pathogen and its public health implications. J Infect Dev Ctries. 2016;10(02):149-54. [DOI:10.3855/jidc.6616] [PMID]
28. Tassou C, Drosinos E, Nychas G. Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4 and 10 C. J appl bacteriol. 1995;78(6):593-600. [DOI:10.1111/j.1365-2672.1995.tb03104.x] [PMID]
29. Xedzro C, Tano-Debrah K, Nakano H. Antibacterial efficacies and time-kill kinetics of indigenous Ghanaian spice extracts against Listeria monocytogenes and some other food-borne pathogenic bacteria. Microbiol Res. 2022;258:126980. [DOI:10.1016/j.micres.2022.126980] [PMID]
30. Ooi LS, Li Y, Kam S-L, Wang H, Wong EY, Ooi VE. Antimicrobial activities of cinnamon oil and cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am J Chinese Med. 2006;34(03):511-22. [DOI:10.1142/S0192415X06004041] [PMID]
31. Utchariyakiat I, Surassmo S, Jaturanpinyo M, Khuntayaporn P, Chomnawang MT. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement Altern Med. 2016;16(1):158. [DOI:10.1186/s12906-016-1134-9] [PMID] [PMCID]
32. Azizi Alidoust F, Anvari M, Ataei Jaliseh S. Antimicrobial activity of aqueous and alcoholic extracts of chamomile, fleawort, aquatic pennyroyal and nettle plants on Klebsiella pneumoniae and comparing their effects with common antibiotics. Iran J Microbiol. 2020;14(4):361-73. [DOI:10.30699/ijmm.14.4.361]
33. Hili P, Evans C, Veness R. Antimicrobial action of essential oils: the effect of dimethylsulphoxide on the activity of cinnamon oil. Lett Appl Microbiol. 1997;24(4):269-75. [DOI:10.1046/j.1472-765X.1997.00073.x] [PMID]
34. Chang S-T, Chen P-F, Chang S-C. Antibacterial activity of leaf essential oils and their constituents from Cinnamomum osmophloeum. J Ethnopharmacol. 2001;77(1):123-7. [DOI:10.1016/S0378-8741(01)00273-2] [PMID]
35. Ranjan S, Dasgupta N, Saha P, Rakshit M, Ramalingam C. Comparative study of antibacterial activity of garlic and cinnamon at different temperature and its application on preservation of fish. Adv Appl Sci Res. 2012;3(1):495-501.
36. Senhaji O, Faid M, Kalalou I. Inactivation of Escherichia coli O157: H7 by essential oil from Cinnamomum zeylanicum. Braz J Infect Dis. 2007;11(2):234-6. [DOI:10.1590/S1413-86702007000200013] [PMID]
37. He Y, Guo D, Yang J, Tortorello ML, Zhang W. Survival and heat resistance of Salmonella enterica and Escherichia coli O157: H7 in peanut butter. Appl Environ Microbiol. 2011;77(23):8434-8. [DOI:10.1128/AEM.06270-11] [PMID] [PMCID]
38. de Jong AE, Van Asselt ED, Zwietering MH, Nauta MJ, de Jonge R. Extreme heat resistance of food borne pathogens Campylobacter jejuni, Escherichia coli, and Salmonella typhimurium on chicken breast fillet during cooking. Int J Microbiol. 2012;2012. [DOI:10.1155/2012/196841] [PMID] [PMCID]
39. Paudel SK, Bhargava K, Kotturi H. Antimicrobial activity of cinnamon oil nanoemulsion against Listeria monocytogenes and Salmonella spp. on melons. LWT. 2019;111:682-7. [DOI:10.1016/j.lwt.2019.05.087]
40. Nozohour Y. Comparison of antibacterial activity of Trans-cinnamaldehyde, 1, 8 Cineole, and Pulegone against Streptococcus equi subsp equi Isolated from Horse. Iran J Med Microbiol. 2021;15(5):606-11. [DOI:10.30699/ijmm.15.5.606]
41. Al-Nabulsi AA, Osaili TM, Olaimat AN, Almasri WE, Ayyash M, Al-Holy MA, et al. Inactivation of Salmonella spp. in tahini using plant essential oil extracts. Food Microbiol. 2020;86:103338. [DOI:10.1016/] [PMID]
42. Gündüz GT, Gönül ŞA, Karapinar M. Efficacy of sumac and oregano in the inactivation of Salmonella Typhimurium on tomatoes. Int J Food Microbiol. 2010;141(1-2):39-44. [DOI:10.1016/j.ijfoodmicro.2010.04.021] [PMID]
43. Vallejo CV, Minahk CJ, Rollán GC, Rodríguez‐Vaquero MJ. Inactivation of Listeria monocytogenes and Salmonella Typhimurium in strawberry juice enriched with strawberry polyphenols. J Sci Food Agric. 2020;101(2):441-8. [DOI:10.1002/jsfa.10653] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc