year 16, Issue 3 (May - June 2022)                   Iran J Med Microbiol 2022, 16(3): 244-250 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehrabifar N, Staji H, Keywanlou M, Salimi Bejestani M, Gallehdar Kakhki E. Identification and Genotyping of Anaplasma phagocytophylum Strains with Zoonotic Potential in Dogs from Mashhad Shelters, Khorasan-Razavi Province, Iran. Iran J Med Microbiol. 2022; 16 (3) :244-250
1- Departement of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
2- Departement of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran ,
3- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
4- Small Animal Veterinary Clinician, Mashhad, Iran
Abstract:   (516 Views)

Background and Objective: Anaplasmosis caused by Anaplasma spp. is an important arthropod-borne disease of various vertebrates with health concerns to humans. The present study aimed to investigate the detection and genotype of Anaplasma phagocytophilum using microscopic examination, real-time PCR technique, and phylogenetic analysis in dogs from Mashhad shelters, Khorasan-Razavi province.
Methods: For this purpose, 250 blood specimens were collected during routine health checkups from dogs in different shelters in Mashhad, Iran, in 2020. First, smears were prepared from the blood specimens, stained with Giemsa, and examined under the light microscope for Anaplasma inclusions. Then, the genomic DNAs were extracted from buffy coats of blood specimens and screened by real-time PCR for the presence of Anaplasma infection by amplifying a 1400 bp sequence of 16S rRNA belonging to the Anaplasma genus. Finally, sequencing and BLAST analyses were carried out on the amplified fragments for the phylogenetic assessments in positive specimens.
Results: A total of 9 dogs (3.60%), including 5 females (3.40%) and 4 males (3.88%) were found to be positive for Anaplasma infection in real-time PCR. Moreover, in blood smear observation, A. phagocytophilum morulae were detected in the neutrophils of 3 PCR positive animals.
Conclusion: This study provides important data regarding A. phagocytophilum in dogs and the degree of genetic homology/heterogeneities among these pathogen strains from dogs and humans in Iran and other countries. To our knowledge, this is the first molecular evidence on the infection of A. phagocytophilum in sheltered dogs of the region.

Full-Text [PDF 490 kb]   (76 Downloads) |   |   Full-Text (HTML)  (101 Views)  
Type of Study: Original Research Article | Subject: Zoonoses Research
Received: 2021/11/2 | Accepted: 2022/01/19 | ePublished: 2022/03/20

1. Staji H, Yousefi M, Hamedani MA, Tamai IA, Khaligh SG. Genetic characterization and phylogenetic of Anaplasma capra in Persian onagers (Equus hemionus onager). Vet Microbiol. 2021 Oct 1;261:109199. [DOI:10.1016/j.vetmic.2021.109199] [PMID]
2. Rymaszewska A, Grenda S. Bacteria of the genus Anaplasma–characteristics of Anaplasma and their vectors: a review. Vet Med. 2008 Nov 1;53(11):573-84. [DOI:10.17221/1861-VETMED]
3. Qin XR, Han FJ, Luo LM, Zhao FM, Han HJ, Zhang ZT, Liu JW, Xue ZF, Liu MM, Ma DQ, Huang YT. Anaplasma species detected in Haemaphysalis longicornis tick from China. Ticks Tick Borne Dis. 2018 May 1;9(4):840-3. [DOI:10.1016/j.ttbdis.2018.03.014] [PMID]
4. Liu Z, Ma M, Wang Z, Wang J, Peng Y, Li Y, Guan G, Luo J, Yin H. Molecular survey and genetic identification of Anaplasma species in goats from central and southern China. Appl Environ Microbiol. 2012 Jan 15;78(2):464-70. [DOI:10.1128/AEM.06848-11] [PMID] [PMCID]
5. Li H, Zheng YC, Ma L, Jia N, Jiang BG, Jiang RR, Huo QB, Wang YW, Liu HB, Chu YL, Song YD. Human infection with a novel tick-borne Anaplasma species in China: a surveillance study. Lancet Infect Dis. 2015 Jun 1;15(6):663-70. [DOI:10.1016/S1473-3099(15)70051-4]
6. Chochlakis D, Ioannou I, Tselentis Y, Psaroulaki A. Human anaplasmosis and Anaplasma ovis variant. Emerg Infect Dis. 2010 Jun;16(6):1031. [DOI:10.3201/eid1606.090175] [PMID] [PMCID]
7. Truchan HK, Seidman D, Carlyon JA. Breaking in and grabbing a meal: Anaplasma phagocytophilum cellular invasion, nutrient acquisition, and promising tools for their study. Microbes Infect. 2013 Dec 1;15(14-15):1017-25. [DOI:10.1016/j.micinf.2013.10.010] [PMID] [PMCID]
8. Nicholson WL. Family Anaplasmataceae (Anaplasmosis, Ehrlichiosis, Neorickettsiosis, and Neoehrlichiosis). InPrinciples and Practice of Pediatric Infectious Diseases 2018 Jan 1 (pp. 918-923). Elsevier. [DOI:10.1016/B978-0-323-40181-4.00170-5]
9. Dyachenko V, Pantchev N, Balzer HJ, Meyersen A, Straubinger RK. First case of Anaplasma platys infection in a dog from Croatia. Parasites vectors. 2012 Dec;5(1):1-7. [DOI:10.1186/1756-3305-5-49] [PMID] [PMCID]
10. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences. 2004 Jul 27;101(30):11030-5. [DOI:10.1073/pnas.0404206101] [PMID] [PMCID]
11. Staji H, Tamai IA, Kafi ZZ. FIRST REPORT OF Paenibacillus cineris FROM A BURMESE PYTHON (Python molurus bivittatus) WITH ORAL ABSCESS. Slov Vet Res. 2021 Apr 1;58(2). [DOI:10.26873/SVR-1096-2020]
12. Fourie JJ, Evans A, Labuschagne M, Crafford D, Madder M, Pollmeier M, Schunack B. Transmission of Anaplasma phagocytophilum (Foggie, 1949) by Ixodes ricinus (Linnaeus, 1758) ticks feeding on dogs and artificial membranes. Parasites Vectors. 2019 Dec;12(1):1-0. [DOI:10.1186/s13071-019-3396-9] [PMID] [PMCID]
13. Elhamiani Khatat S, Daminet S, Kachani M, Leutenegger CM, Duchateau L, El Amri H, Hing M, Azrib R, Sahibi H. Anaplasma spp. in dogs and owners in north-western Morocco. Parasites Vectors. 2017 Dec;10(1):1-0. [DOI:10.1186/s13071-017-2148-y] [PMID] [PMCID]
14. Park JH, Heo EJ, Choi KS, Dumler JS, Chae JS. Detection of antibodies to Anaplasma phagocytophilum and Ehrlichia chaffeensis antigens in sera of Korean patients by western immunoblotting and indirect immunofluorescence assays. Clin Vaccine Immunol. 2003 Nov;10(6):1059-64. [DOI:10.1128/CDLI.10.6.1059-1064.2003] [PMID] [PMCID]
15. Kawahara M, Rikihisa Y, Lin Q, Isogai E, Tahara K, Itagaki A, Hiramitsu Y, Tajima T. Novel genetic variants of Anaplasma phagocytophilum, Anaplasma bovis, Anaplasma centrale, and a novel Ehrlichia sp. in wild deer and ticks on two major islands in Japan. Appl Environ Microbiol. 2006 Feb;72(2):1102-9. [DOI:10.1128/AEM.72.2.1102-1109.2006] [PMID] [PMCID]
16. Ooshiro M, Zakimi S, Matsukawa Y, Katagiri Y, Inokuma H. Detection of Anaplasma bovis and Anaplasma phagocytophilum from cattle on Yonaguni Island, Okinawa, Japan. Vet Parasitol. 2008 Jul 4;154(3-4):360-4 [DOI:10.1016/j.vetpar.2008.03.028] [PMID]
17. Bashiribod H. First Molecular Detection of Anaplasma phagocytophilum in. J Med Sci. 2004 Oct;4(4):282-6. [DOI:10.3923/jms.2004.282.286]
18. Razmi GR, Dastjerdi K, Hossieni H, Naghibi A, Barati F, Aslani MR. An epidemiological study on Anaplasma infection in cattle, sheep, and goats in Mashhad Suburb, Khorasan Province, Iran. Ann N Y Acad Sci. 2006 Oct;1078(1):479-81. [DOI:10.1196/annals.1374.089] [PMID]
19. Yousefi A, Rahbari S, Shayan P, Sadeghi-dehkordi Z, Bahonar A. Molecular evidence of Anaplasma phagocytophilum: an emerging tick-borne pathogen in domesticated small ruminant of Iran; first report. Comp Clin Pathol. 2017 May;26(3):637-42. [DOI:10.1007/s00580-017-2429-z]
20. Hosseini-Vasoukolaei N, Oshaghi MA, Shayan P, Vatandoost H, Babamahmoudi F, Yaghoobi-Ershadi MR, Telmadarraiy Z, Mohtarami F. Anaplasma infection in ticks, livestock and human in Ghaemshahr, Mazandaran Province, Iran. J Arthropod Borne Dis. 2014 Dec;8(2):204.
21. Noaman V. Epidemiological study on Anaplasma phagocytophilum in cattle: molecular prevalence and risk factors assessment in different ecological zones in Iran. Prevent Vet Med. 2020 Oct 1;183:105118. [DOI:10.1016/j.prevetmed.2020.105118] [PMID]
22. Yousefi AM, Chaechi Nosrati MR, Golmohammadi A, Azami S. Molecular detection of Anaplasma phagocytophilum as a zoonotic agent in owned and stray dogs in Tehran, Iran. Arch Razi Inst. 2019 Mar 1;74(1):33-8.
23. Hamidinejat H, Bahrami S, Mosalanejad B, Pahlavan S. First molecular survey on Anaplasma phagocytophilum revealed high prevalence in rural dogs from Khuzestan Province, Iran. Iran J Parasitol. 2019 Apr;14(2):297. [DOI:10.18502/ijpa.v14i2.1142] [PMID] [PMCID]
24. Shabana II, Alhadlag NM, Zaraket H. Diagnostic tools of caprine and ovine anaplasmosis: a direct comparative study. BMC Vet Res. 2018 Dec;14(1):1-8.
25. Lew AE, Gale KR, Minchin CM, Shkap V, de Waal DT. Phylogenetic analysis of the erythrocytic Anaplasma species based on 16S rDNA and GroEL (HSP60) sequences of A. marginale, A. centrale, and A. ovis and the specific detection of A. centrale vaccine strain. Vet Microbiol. 2003 Mar 20;92(1-2):145-60. [DOI:10.1016/S0378-1135(02)00352-8]
26. Molad T, Mazuz ML, Fleiderovitz L, Fish L, Savitsky I, Krigel Y, Leibovitz B, Molloy J, Jongejan F, Shkap V. Molecular and serological detection of A. centrale-and A. marginale-infected cattle grazing within an endemic area. Vet Microbiol. 2006 Mar 10;113(1-2):55-62. [DOI:10.1016/j.vetmic.2005.10.026] [PMID]
27. Noaman V, Shayan P. Molecular detection of Anaplasma phagocytophilum in carrier cattle of Iran-first documented report. Iran J Microbiol. 2009 Jan; 1(2):37-42.
28. Lu M, Li F, Liao Y, Shen JJ, Xu JM, Chen YZ, Li JH, Holmes EC, Zhang YZ. Epidemiology and diversity of Rickettsiales bacteria in humans and animals in Jiangsu and Jiangxi provinces, China. Sci Rep. 2019 Sep 11;9(1):1-9. [DOI:10.1038/s41598-019-49059-3] [PMID] [PMCID]
29. Fukui Y, Ohkawa S, Inokuma H. First molecular detection and phylogenetic analysis of Anaplasma phagocytophilum from a clinical case of canine granulocytic anaplasmosis in Japan. Jpn J Infect Dis. 2018 Jul 31;71(4):302-5. [DOI:10.7883/yoken.JJID.2017.558] [PMID]
30. Liu Z, Ma M, Wang Z, Wang J, Peng Y, Li Y, Guan G, Luo J, Yin H. Molecular survey and genetic identification of Anaplasma species in goats from central and southern China. Appl Environ Microbiol. 2012 Jan 15;78(2):464-70. [DOI:10.1128/AEM.06848-11] [PMID] [PMCID]
31. Barbet AF, Al-Khedery B, Stuen S, Granquist EG, Felsheim RF, Munderloh UG. An emerging tick-borne disease of humans is caused by a subset of strains with conserved genome structure. Pathogens. 2013 Sep;2(3):544-55. [DOI:10.3390/pathogens2030544] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc