year 16, Issue 3 (May - June 2022)                   Iran J Med Microbiol 2022, 16(3): 212-220 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shahandeh Z, Sadighian F, Kalantrai N. Prevalence Escherichia coli, Klebsiella and Enterobacter Species and AmpC-producing Enterobacteriaceae in Clinical Specimens of Hospitals Affiliated to Babol University of Medical Sciences, Iran using Phenotypic and Molecular Methods. Iran J Med Microbiol. 2022; 16 (3) :212-220
1- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Health Research Institute, Babol University of Medical Sciences, Babol, Iran ,
2- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
Abstract:   (492 Views)

Background and Objective: AmpC-producing bacteria are a severe threat to treating infectious diseases caused by gram-negative bacteria. The actual prevalence of these bacteria is not clearly determined as there is no reliable diagnostic method available to detect them. Therefore, this study was performed to determine the frequency of Escherichia coli, Klebsiella, and Enterobacter species producing AmpC among clinical samples by phenotypic and molecular methods.
Methods: In this study, 163 bacteria of Enterobacteriaceae species isolated from different clinical samples in 2018 were examined. Suspected isolates of producing pAmpC were identified using cefoxitin disk (FOX) and disk diffusion method. Three confirmatory phenotypic methods were performed to identify pAmpC production, and blaDHA, blaFOX, blaMOX genes were searched using a molecular method for all bacteria. Specificity and sensitivity of phenotypic tests were obtained compared to the presence of blaDHAgene.
Results: Of 163 bacteria, 80 (49.1%) isolates were resistant to FOX, and 21 (12.9%) carried the blaDHA gene. Among the bacteria carrying the gene, 5 (6%) isolates were sensitive to FOX. 49 (61.3%) FOX-resistance bacteria were positive in one of the chromosomal and/or plasmid phenotypic tests. The highest specificity and sensitivity were observed in the AmpC disk (90.8%) and CAM (42.7%) methods, respectively.
Conclusion: It seems phenotypic methods are more successful in distinguishing true negatives (higher specificity). Also, sensitivity to cefoxitin is not a criterion for not producing the enzyme AmpC. For this reason, it is recommended that national monitoring be performed to identify the genes of AmpC producing bacteria.

Full-Text [PDF 525 kb]   (120 Downloads) |   |   Full-Text (HTML)  (140 Views)  
Type of Study: Original Research Article | Subject: Antibiotic Resistance
Received: 2021/09/11 | Accepted: 2022/01/26 | ePublished: 2022/03/20

1. Caliskan E, Say Coskun US, Dulger G, Kilincel O, Ankarali H, Sahin I. Investigation of plasmid mediated AmpC beta-lactamases in Escherichia coli and Klebsiella pneumoniae isolates by phenotypic and genotypic. J Pak Med Assoc. 2019;69(6):834-9.
2. Abdalhamid B, Albunayan S, Shaikh A, Elhadi N, Aljindan R. Prevalence study of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking inducible ampC from Saudi hospitals. Journal of medical microbiology. 2017;66(9):1286-90. [DOI:10.1099/jmm.0.000504] [PMID]
3. Rensing KL, Abdallah H, Koek A, Elmowalid GA, Vandenbroucke-Grauls CM, Al Naiemi N, et al. Prevalence of plasmid-mediated AmpC in Enterobacteriaceae isolated from humans and from retail meat in Zagazig, Egypt. Antimicrobial Resistance & Infection Control. 2019;8(1):1-8. [DOI:10.1186/s13756-019-0494-6] [PMID] [PMCID]
4. Govindaswamy A, Bajpai V, Batra P, Malhotra R, Mathur P. Phenotypic and molecular characterization of extended spectrum beta lactamase and AmpC beta lactamases in Escherichia coli from a tertiary care centre in India. 2018.
5. Correa-Martínez CL, Idelevich EA, Sparbier K, Kostrzewa M, Becker K. Rapid detection of extended-spectrum β-lactamases (ESBL) and AmpC β-lactamases in Enterobacterales: development of a screening panel using the MALDI-TOF MS-based direct-on-target microdroplet growth assay. Frontiers in microbiology. 2019;10:13. [DOI:10.3389/fmicb.2019.00013] [PMID] [PMCID]
6. Mohd Khari FI, Karunakaran R, Rosli R, Tee Tay S. Genotypic and phenotypic detection of AmpC β-lactamases in Enterobacter spp. isolated from a teaching hospital in Malaysia. PLoS One. 2016;11(3):e0150643. [DOI:10.1371/journal.pone.0150643] [PMID] [PMCID]
7. Aryal SC, Upreti MK, Sah AK, Ansari M, Nepal K, Dhungel B, et al. Plasmid-mediated AmpC β-lactamase CITM and DHAM genes among gram-negative clinical isolates. Infection and Drug Resistance. 2020;13:4249. [DOI:10.2147/IDR.S284751] [PMID] [PMCID]
8. Othman H, Abd El Hamid D. Evaluation of Phenotypic Methods for Detection of Plasmid-Mediated AmpC β-Lactamases (PMABLs) among Klebsiella pneumoniae. International Journal of Current Microbiology and Applied Sciences. 2016;5:230-9. [DOI:10.20546/ijcmas.2016.511.025]
9. Ibrahim ME, Abbas M, Al-Shahrai AM, Elamin BK. Phenotypic characterization and antibiotic resistance patterns of extended-spectrum β-Lactamase-and AmpC β-lactamase-producing Gram-negative bacteria in a referral hospital, Saudi Arabia. Canadian Journal of Infectious Diseases and Medical Microbiology. 2019;2019. [DOI:10.1155/2019/6054694] [PMID] [PMCID]
10. Reuland EA, Halaby T, Hays JP, de Jongh DM, Snetselaar HD, Van Keulen M, et al. Plasmid-mediated AmpC: prevalence in community-acquired isolates in Amsterdam, the Netherlands, and risk factors for carriage. PLoS One. 2015;10(1):e0113033. [DOI:10.1371/journal.pone.0113033] [PMID] [PMCID]
11. W.Procop G, Church DL, Hall GS, Janda WM. Koneman's Color Atlas and Textbook of Diagnostic Microbiology. 7th ed. philadelphia: Wolters Kluwer Health; 2017. 1412 p.
12. Ghonaim R, Moaety H. Comparison between Multiplex PCR and Phenotypic Detection Methods for Identifying. AmpC B. 2018. [DOI:10.4172/2327-5073.1000313]
13. Tamma PD, Doi Y, Bonomo RA, Johnson JK, Simner PJ, RA ARLGTPDYB. A primer on AmpC β-lactamases: necessary knowledge for an increasingly multidrug-resistant world. Clinical Infectious Diseases. 2019;69(8):1446-55. [DOI:10.1093/cid/ciz173] [PMID] [PMCID]
14. Wassef M, Behiry I, Younan M, El Guindy N, Mostafa S, Abada E. Genotypic Identification of AmpC β-Lactamases Production in Gram-Negative Bacilli Isolates. Jundishapur journal of microbiology. 2014;7(1):e8556. [DOI:10.5812/jjm.8556] [PMID] [PMCID]
15. Zorgani A, Daw H, Sufya N, Bashein A, Elahmer O, Chouchani C. Co-occurrence of plasmid-mediated AmpC β-lactamase activity among Klebsiella pneumoniae and Escherichia Coli. The open microbiology journal. 2017;11:195. [DOI:10.2174/1874285801711010195] [PMID] [PMCID]
16. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing;Twenty-fourth informational supplement Cd-SCaLSI, Wayne, PA. 2015.
17. Coudron PE, Moland ES, Thomson KS. Occurrence and detection of AmpC beta-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. Journal of Clinical Microbiology. 2000;38(5):1791-6. [DOI:10.1128/JCM.38.5.1791-1796.2000] [PMID] [PMCID]
18. Mohamudha PR, Harish B, Parija S. AmpC beta lactamases among Gram negative clinical isolates from a tertiary hospital, South India. Brazilian Journal of Microbiology. 2010;41(3):596-602. [DOI:10.1590/S1517-83822010000300009] [PMID] [PMCID]
19. Jacoby GA. AmpC β-lactamases. Clinical microbiology reviews. 2009;22(1):161-82. [DOI:10.1128/CMR.00036-08] [PMID] [PMCID]
20. Shahandeh Z, Sadighian F, Beigom Rekabpor K. Phenotypic Detection of ESBL, MBL (IMP-1), and AmpC Enzymes, and Their Coexistence in Enterobacter and Klebsiella Species Isolated FromClinical Specimens. Int J Enteric Pathog. 2016;4(2):1-7. [DOI:10.17795/ijep32812]
21. Yagi T, Wachino J-i, Kurokawa H, Suzuki S, Yamane K, Doi Y, et al. Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. Journal of Clinical Microbiology. 2005;43(6):2551-8. [DOI:10.1128/JCM.43.6.2551-2558.2005] [PMID] [PMCID]
22. Shahandeh Z, Sadighian F, Rekabpou KB. Phenotypic study of Extended-spectrum beta-lactamase, AmpC and Carbapenemase among E. coli clinical isolates in affiliated hospitals of Babol University of Medical Sciences. International Journal of Health System and Disaster Management. 2015;3(2):74.
23. Rudresh S, Nagarathnamma T. Two simple modifications of modified three-dimensional extract test for detection of AmpC [beta]-lactamases among the members of family Enterobacteriaceae. Chronicles of young Scientists. 2011;2(1):42. [DOI:10.4103/2229-5186.79349]
24. Dallenne C, Da Costa A, Decré D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy. 2010;65(3):490-5. [DOI:10.1093/jac/dkp498] [PMID]
25. Ghanavati R, Darban-Sarokhalil D, Navab-Moghadam F, Kazemian H, Irajian G, Razavi S. First report of coexistence of AmpC beta-lactamase genes in Klebsiella pneumoniae strains isolated from burn patients. Acta microbiologica et immunologica Hungarica. 2017;64(4):455-62. [DOI:10.1556/030.64.2017.028] [PMID]
26. Ghanavati R, Emaneini M, Kalantar-Neyestanaki D, Maraji AS, Dalvand M, Beigverdi R, et al. Clonal relation and antimicrobial resistance pattern of extended-spectrum β-lactamase-and AmpC β-lactamase-producing Enterobacter spp. isolated from different clinical samples in Tehran, Iran. Revista da Sociedade Brasileira de Medicina Tropical. 2018;51:88-93. [DOI:10.1590/0037-8682-0227-2017] [PMID]
27. Robatjazi S, Nikkhahi F, Niazadeh M, Marashi SMA, Peymani A, Javadi A, et al. Phenotypic identification and genotypic characterization of plasmid-mediated AmpC β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in Iran. Current Microbiology. 2021;78(6):2317-23. [DOI:10.1007/s00284-021-02479-9] [PMID]
28. Reuland EA, Hays JP, de Jongh DM, Abdelrehim E, Willemsen I, Kluytmans JA, et al. Detection and occurrence of plasmid-mediated AmpC in highly resistant gram-negative rods. PloS one. 2014;9(3):e91396. [DOI:10.1371/journal.pone.0091396] [PMID] [PMCID]
29. Yilmaz N, Agus N, Bozcal E, Oner O, Uzel A. Detection of plasmid-mediated AmpC β-lactamase in Escherichia coli and Klebsiella pneumoniae. Indian Journal of Medical Microbiology. 2013;31(1):53. [DOI:10.4103/0255-0857.108723] [PMID]
30. Gharout-Sait A, Touati A, Guillard T, Brasme L, de Champs C. Molecular characterization and epidemiology of cefoxitin resistance among Enterobacteriaceae lacking inducible chromosomal ampC genes from hospitalized and non-hospitalized patients in Algeria: description of new sequence type in Klebsiella pneumoniae isolates. The Brazilian Journal of Infectious Diseases. 2015;19(2):187-95. [DOI:10.1016/j.bjid.2014.12.001] [PMID]
31. Ye Q, Wu Q, Zhang S, Zhang J, Yang G, Wang H, et al. Antibiotic-resistant extended spectrum ss-lactamase-and plasmid-mediated AmpC-producing enterobacteriaceae isolated from retail food products and the pearl river in Guangzhou, China. Frontiers in microbiology. 2017;8:96. [DOI:10.3389/fmicb.2017.00096] [PMID] [PMCID]
32. Uzunović S, Ibrahimagić A, Hodžić D, Bedenić B. Molecular epidemiology and antimicrobial susceptibility of AmpC-and/or extended-spectrum (ESBL) ß-lactamase-producing Proteus spp. clinical isolates in Zenica-Doboj Canton, Bosnia and Herzegovina. Med Glas (Zenica). 2016;1(2):103. [DOI:10.1016/j.ijid.2016.11.114]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc