year 16, Issue 2 (March - April 2022)                   Iran J Med Microbiol 2022, 16(2): 116-126 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Babaheidarian P, Mehdinejad M, Zare-Mirzaie A, Mokarinejad R, Jafari E. The Association Between Genetic Variants in Extended Spectrum Beta-Lactamases and AmpC-producing Gram-Negative Bacilli and Antibiotic Resistance. Iran J Med Microbiol. 2022; 16 (2) :116-126
1- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
2- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran ,
3- Department of Pathology, RASOOL-E-AKRAM Hospital, Iran University of Medical Sciences, Tehran, Iran
Abstract:   (418 Views)

Background and Objective: A large group of genes associated with extended-spectrum beta-lactamases (ESBL) and AmpC expression is involved in inducing antibiotic resistance in various bacteria. Identifying these genes and assessing their harboring will be crucial in determining the pattern of antibiotic resistance. This study aimed to characterize genetic variants in extended-spectrum beta-lactamases, AmpC-producing gram-negative bacilli, and associated antibiotic resistance.
Methods: This cross-sectional research was conducted on clinical samples of patients admitted to Rasool-e-Akram Hospital, Tehran, Iran (2019 and 2020). The genetic variants were assessed by the Polymerase chain reaction method. The pattern of durability to antibiotics was determined by the disk diffusion system.
Results: Of the 80 isolates that produced ESBL and AmpC beta-lactamase, 75 cases were ESBL producers and 5 cases co-producers of ESBL and AmpC. The most common cultivated strains included Escherichia coli (61.2%) and Klebsiella pneumoniae (31.3%). The highest antibiotic resistance in ESBL producers was related to cefotaxime, trimethoprim-sulfamethoxazole, and cefazolin, and the lowest resistance level was related to colistin, cefoxitin, and ceftriaxone. The total frequencies of common genes of ESBL-producing gram-negative bacilli were blaCTX-M (76.0%), blaTEM (46.7%), and blaSHV (26.7%), while multigenic harboring was also observed in 49.3%. The level of drug resistance to Imipenem, Amikacin, and Ceftazidime in people who harbored the blaSHV gene was significantly higher than in other cases.
Conclusion: The most common cultivated strains included E. coli and K. pneumoniae. blaCTX-M, blaTEM, blaSHV, and multigenic expression were observed. The detection of the blaSHV gene is associated with increased antibiotic resistance to Imipenem, Amikacin, and Ceftazidime.

Full-Text [PDF 979 kb]   (78 Downloads) |   |   Full-Text (HTML)  (72 Views)  
Type of Study: Original Research Article | Subject: Molecular Microbiology
Received: 2021/09/7 | Accepted: 2022/01/15 | ePublished: 2022/02/10

1. Dancer SJ, Coyne M, Robertson C, Thomson A, Guleri A, Alcock S. Antibiotic use is associated with resistance of environmental organisms in a teaching hospital. J Hosp Infect; 2006; 62(2):200-6. [DOI:10.1016/j.jhin.2005.06.033] [PMID]
2. Klugman KP, Madhi SA. Emergence of drug resistance: impact on bacterial meningitis. Infect Dis Clin North Am. 1999;13(3): 637-646. [DOI:10.1016/S0891-5520(05)70098-2]
3. Jalalpoor SH, Abousaidi H. Survey Role and Important of Surfaces Structure and β-lactamase of Bacillus cereus in Drug Resistant. J Microb World. 2009; 2(3): 169-76.
4. Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob Agents Chemother. 1998; 42(1):1-17. [DOI:10.1128/AAC.42.1.1] [PMID] [PMCID]
5. Fedarovich A, Nicholas RA, Davies C.The role of the β5-α11 loop in the active-site dynamics of acylated penicillin-binding protein A from Mycobacterium tuberculosis. J Mol Biol. 2012; 418(5): 316-30. [DOI:10.1016/j.jmb.2012.02.021] [PMID] [PMCID]
6. Zapun A,Contreras-Martel C,Vernet T. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev. 2008; 32(2):361-85. [DOI:10.1111/j.1574-6976.2007.00095.x] [PMID]
7. Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta Proteins Proteom. 2009; 1794(5):808-16. [DOI:10.1016/j.bbapap.2008.11.005] [PMID] [PMCID]
8. Jalalpoor S, Kermanshahi RK, Noohi AS, Isfahani HZ. The Prevalence of Nano-structure Surface Layer in Bacillus Cereus Strains Isolated from Staff Hands and Hospital Surfaces. J Isfahan Med School. 2009;27(100):632-45.
9. Samaha-Kfoury JN, Araj GF. Recent developments in β lactamases and extended spectrum β lactamases, BMJ. 2003; 327(7425):1209-13. [DOI:10.1136/bmj.327.7425.1209] [PMID] [PMCID]
10. Parija S. Textbook of Microbiology & Immunology. 2th ed. Elsevier Health Sciences; 2014.
11. Thomson KS. Extended-spectrum-β-lactamase, AmpC, and carbapenemase issues. J Clin Microbiol. 2010; 48(4):1019-25. [DOI:10.1128/JCM.00219-10] [PMID] [PMCID]
12. Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs. 2009;69(12):1555-623. [DOI:10.2165/11317030-000000000-00000] [PMID] [PMCID]
13. Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010; 54(3):969-76. [DOI:10.1128/AAC.01009-09] [PMID] [PMCID]
14. Pitout JD. Infections with extended-spectrum β-lactamase-producing Enterobacteriaceae. Drugs. 2010; 70(3): 313-33. [DOI:10.2165/11533040-000000000-00000] [PMID]
15. Ambler RP, et al.A standard numbering scheme for the class A β-lactamases. Biochem J. 1991; 276(Pt 1): 269-70. [DOI:10.1042/bj2760269] [PMID] [PMCID]
16. Jacoby GA. AmpC β-lactamases. Clin Microbiol Rev. 2009; 22(1): 161-82. [DOI:10.1128/CMR.00036-08] [PMID] [PMCID]
17. Chew KL , Lin RT, Teo JW. Klebsiella pneumoniae in Singapore: hypervirulent infections and the carbapenemase threat. Front Cell Infect Microbiol. 2017;7: 515. [DOI:10.3389/fcimb.2017.00515] [PMID] [PMCID]
18. Cho JC, Fiorenza MA, Estrada SJ. Ceftolozane/Tazobactam: A Novel Cephalosporin/β-Lactamase Inhibitor Combination. Pharmacotherapy. 2015; 35(7):701-15. [DOI:10.1002/phar.1609] [PMID]
19. Geisinger E, Isberg RR. Interplay between antibiotic resistance and virulence during disease promoted by multidrug-resistant bacteria. J Infect Dis. 2017; 215(suppl_1):S9-17. [DOI:10.1093/infdis/jiw402] [PMID] [PMCID]
20. D'Andrea MM, Arena F, Pallecch L, Rossolini GM. CTX-M-type β-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol. 2013; 303(6-7): 305-17. [DOI:10.1016/j.ijmm.2013.02.008] [PMID]
21. Levy SB. Factors impacting on the problem of antibiotic resistance. J Antimicrob Chemother. 2002; 49(1):25-30. [DOI:10.1093/jac/49.1.25] [PMID]
22. Rajivgandhi G, Maruthupandy M, Ramachandran G, Priyanga M, Manoharan N. Detection of ESBL genes from ciprofloxacin resistant Gram negative bacteria isolated from urinary tract infections. J Front Lab Med. 2018;2(1):5-13 [DOI:10.1016/j.flm.2018.01.001]
23. Gunjan G, Vibhor T, Purva M. Detection of AmpC betalactamases in gram negative bacteria. J Lab Physicians. 2014;6(01):001-6 [DOI:10.4103/0974-2727.129082] [PMID] [PMCID]
24. Gundran RS et al. Prevalence and distribution of bla CTX-M, bla SHV, bla TEM genes in extended-spectrum β-Lactamase-producing E. coli isolates from broiler farms in the Philippines. BMC Vet Res. 2019; 15(1):1-8. [DOI:10.1186/s12917-019-1975-9] [PMID] [PMCID]
25. Pishtiwan AH, Khadija K.M. Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolated from thalassemia patients in Erbil, Iraq Mediterr J Hematol Infect Dis. 2019;11(1). [DOI:10.4084/mjhid.2019.041] [PMID] [PMCID]
26. Farzi S,Ranjbar R,Niakan M,Ahmadi MH. Molecular Characterization of Antibiotic Resistance Associated with TEM and CTX-M ESBL in Uropathogenic E. coli Strains Isolated from Outpatients. Iran J Pathol. 2021; 16(4):386-91 [DOI:10.30699/ijp.2021.521669.2556] [PMID] [PMCID]
27. Roshdi Maleki M, Taghinejad J. Prevalence of Extended-spectrum Beta-lactamases (ESBL) Types blaTEM and blaSHV in Klebsiella pneumoniae Strains Isolated from Clinical Samples by
28. PCR in Miandoab, West Azerbaijan. Iran J Med Microbiol. 2021; 15(4): 458-64. [DOI:10.30699/ijmm.15.4.458]
29. Bajpai T, Pandey M, Varma M, Bhatambare G. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med. 2017; 7(1):12. [DOI:10.4103/2231-0770.197508] [PMID] [PMCID]
30. Ghaima K. Distribution of extended spectrum beta-lactamase (ESBL) genes among Acinetobacter baumannii isolated from burn infections. MOJ Cell Sci Rep. 2018; 5(3):42-6. [DOI:10.15406/mojcsr.2018.05.00112]
31. Amini K, Konkori M. Identification of Broad-Spectrum Beta-lactamase CTX-M-2, CTX-M-8, and Ampc-dependent CMY Genes in Shigella sonnei Isolated from Pediatric Diarrhea Specimens by Multiplex-PCR and Antibiotic Resistance Pattern Determination. Iran J Med Microbiol. 2020; 14(5): 501-11. [DOI:10.30699/ijmm.14.5.501]
32. Alfaresi MS, Elkoush AA, Alshehhi HM, Abdulsalam AI. Molecular characterization and epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in the United Arab Emirates. Med Princ Pract. 2011; 20(2):177-80. [DOI:10.1159/000319912] [PMID]
33. Koshesh M, Mansouri S,Hashemizadeh Z, Kalantar-Neyestanaki. Identification of extended-spectrum β-lactamase genes and ampc-β-lactamase in clinical isolates of escherichia coli recovered from patients with urinary tract infections in Kerman, Iran. Arch Pediatr Infect Dis. 2017; 5(2): e37968. [DOI:10.5812/pedinfect.37968]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc