year 16, Issue 3 (May - June 2022)                   Iran J Med Microbiol 2022, 16(3): 233-243 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramu K, V A, Rajagopal A, Varyani R, Kini P, Kumar P et al . Influence of Proteus sp. on Trimethylamine N- Oxide production via the Choline Metabolism Pathway and the Formulation of a Predictive Model to Assess the Risk of Coronary Artery Disease in Indian Patients. Iran J Med Microbiol. 2022; 16 (3) :233-243
1- Department of Biotechnology, PES University, Banashankari, Bangalore, Karnataka, India
2- Department of Cardiology, Sri Sathya Sai Institute of Higher Medical Sciences, EPIP Area, Whitefield, Bangalore, Karnataka, India
3- Department of Biotechnology, PES University, Banashankari, Bangalore, Karnataka, India ,
Abstract:   (487 Views)

Background and Objective: Proteus bacteria, a key contributor to several gastrointestinal diseases, is known to survive in the wide pH range offered by different locations of the GI tract. The bacterial enzyme Choline TMA Lyase found in several opportunistic gut commensals catalyzes choline conversion to trimethylamine, a precursor of the pro-atherosclerotic metabolite trimethylamine N oxide. This study evaluates the pathogenic potential of Proteus gut bacteria in patients with coronary artery disease. We also sought to create a simple predictive model for assessing risk factors of coronary artery disease using a sample of Indian patients.
Methods: The study included 14 patients with coronary artery disease and 6 controls. Optimal conditions were devised, and standardized protocols were followed to culture Proteus bacteria in vitro and isolate the protein of interest, Choline TMA Lyase. FTIR analysis and UV spectrophotometry were employed to quantify choline and trimethylamine N oxide levels, respectively. Finally, receiver operating characteristic analysis and multivariate logistic regression established the predictive power of the entire model and trimethylamine N oxide.
Results: The findings demonstrated an optimum activity of this protein and the bacterial growth in the pH range of 7.4 - 9. Quantitative analysis showed trimethylamine N oxide levels to be significantly higher in coronary artery disease patients (1.81 µM) than in controls (0.86 µM).
Conclusion: Optimum activity in the alkaline condition indicates the strong pathological potential of Proteus bacteria in the progression of coronary artery disease. The prediction model can serve as a helpful tool within the medical community to assess the risk factors for coronary artery disease.

Full-Text [PDF 644 kb]   (94 Downloads) |   |   Full-Text (HTML)  (144 Views)  
Type of Study: Original Research Article | Subject: Microbial Biotechnology
Received: 2021/08/26 | Accepted: 2022/01/30 | ePublished: 2022/03/20

1. Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S. Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome. 2020;8(1):1-7. [DOI:10.1186/s40168-020-00821-0] [PMID] [PMCID]
2. Dalla Via A, Gargari G, Taverniti V, Rondini G, Velardi I, Gambaro V, et al. Urinary TMAO levels are associated with the taxonomic composition of the gut microbiota and with the choline TMA-lyase gene (cutC) harbored by Enterobacteriaceae. Nutrients. 2020;12(1):62. [DOI:10.3390/nu12010062] [PMID] [PMCID]
3. Jonsson AL, Bäckhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 2017;14(2):79-87. [DOI:10.1038/nrcardio.2016.183] [PMID]
4. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011 Apr;472(7341):57-63. [DOI:10.1038/nature09922] [PMID] [PMCID]
5. Zhu Y, Li Q, Jiang H. Gut microbiota in atherosclerosis: focus on trimethylamine N‐oxide. APMIS. 2020;128(5):353-66. [DOI:10.1111/apm.13038] [PMID] [PMCID]
6. Jin M, Qian Z, Yin J, Xu W, Zhou X. The role of intestinal microbiota in cardiovascular disease. J. Cell. Mol. Med. 2019 Apr;23(4):2343-50. [DOI:10.1111/jcmm.14195] [PMID] [PMCID]
7. Mobley HL, Belas R. Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol. 1995;3(7):280-4. [DOI:10.1016/S0966-842X(00)88945-3]
8. Hamilton AL, Kamm MA, Ng SC, Morrison M. Proteus spp. as putative gastrointestinal pathogens. Clin Microbiol Rev. 2018;31(3):e00085-17. [DOI:10.1128/CMR.00085-17] [PMID] [PMCID]
9. Jameson E, Fu T, Brown IR, Paszkiewicz K, Purdy KJ, Frank S, Chen Y. Anaerobic choline metabolism in microcompartments promotes growth and swarming of Proteus mirabilis. Environ Microbiol. 2016;18(9):2886-98. [DOI:10.1111/1462-2920.13059] [PMID] [PMCID]
10. Schaffer JN, Pearson MM. Proteus mirabilis and urinary tract infections. Microbiol Spectr. 2015; 3(5):0017-2013. [DOI:10.1128/microbiolspec.UTI-0017-2013] [PMID] [PMCID]
11. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012 Jun;486(7402):222-7. [DOI:10.1038/nature11053] [PMID] [PMCID]
12. Bergey, D. H., Noel R. Krieg, and John G. Holt. Bergey's Manual of Systematic Bacteriology. Baltimore, MD: Williams & Wilkins, 1984.
13. Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th edition. New York: W H Freeman; 2002.
14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265-75. [DOI:10.1016/S0021-9258(19)52451-6]
15. Al-Tubuly AA. SDS-PAGE and western blotting. In Diagnostic and Therapeutic Antibodies 2000 (pp. 391-405). Humana, Totowa, NJ. [DOI:10.1385/1-59259-076-4:391] [PMID]
16. Appleton HD, La Du BN, Levy BB, Steele JM, Brodie BB. A chemical method for the determination of free choline in plasma. J Biol Chem. 1953;205(2):803-13. [DOI:10.1016/S0021-9258(18)49224-1]
17. Wang Z, Tang WW, Buffa JA, Fu X, Britt EB, Koeth RA, Levison BS, Fan Y, Wu Y, Hazen SL. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J. 2014;35(14):904-10. [DOI:10.1093/eurheartj/ehu002] [PMID] [PMCID]
18. Wekell JC, Barnett H. New method for analysis of trimethylamine oxide using ferrous sulfate and EDTA. J Food Sci. 1991;56(1):132-5. [DOI:10.1111/j.1365-2621.1991.tb07993.x]
19. Moraes LG, Rocha RS, Menegazzo LM, Araújo EB, Yukimito K, Moraes JC. Infrared spectroscopy: a tool for determination of the degree of conversion in dental composites. J Appl Oral Sci. 2008;16:145-9. [DOI:10.1590/S1678-77572008000200012] [PMID] [PMCID]
20. Kalnins G, Kuka J, Grinberga S, Makrecka-Kuka M, Liepinsh E, Dambrova M et al. Structure and function of CutC choline lyase from human microbiota bacterium Klebsiella pneumoniae. J Biol Chem. 2015;290(35):21732-40. [DOI:10.1074/jbc.M115.670471] [PMID] [PMCID]
21. Cedola F, Coras R, Sanchez-Lopez E, Mateo L, Pedersen A, Brandy-Garcia A. et al. Choline metabolite is associated with inflammation in arthritis in the elderly. Arthritis Rheumatol. 2019 Oct 1 (Vol. 71). 111 RIVER ST, HOBOKEN 07030-5774, NJ USA: WILEY.
22. Chan MM, Yang X, Wang H, Saaoud F, Sun Y, Fong D. The microbial metabolite trimethylamine N-oxide links vascular dysfunctions and the autoimmune disease rheumatoid arthritis. Nutrients. 2019;11(8):1821. [DOI:10.3390/nu11081821] [PMID] [PMCID]
23. Mazidi M, Katsiki N, Mikhailidis DP, Banach M. Dietary choline is positively related to overall and cause-specific mortality: results from individuals of the National Health and Nutrition Examination Survey and pooling prospective data. Br J Nutr. 2019;122(11):1262-70. [DOI:10.1017/S0007114519001065] [PMID]
24. Dambrova M, Latkovskis G, Kuka J, Strele I, Konrade I, Grinberga S et al. Diabetes is associated with higher trimethylamine N-oxide plasma levels. Exp Clin Endocrinol. Diabetes. 2016;124(04):251-6. [DOI:10.1055/s-0035-1569330] [PMID]
25. Dong Z, Liang Z, Guo M, Hu S, Shen Z, Hai X. The association between plasma levels of trimethylamine N-oxide and the risk of coronary heart disease in Chinese patients with or without type 2 diabetes mellitus. Dis Markers. 2018;2018. [DOI:10.1155/2018/1578320] [PMID] [PMCID]
26. Liu W, Balu N, Canton G, Hippe DS, Watase H, Waterton JC et al. Understanding atherosclerosis through an osteoarthritis data set: From knee to vessel. Arterioscler Thromb Vasc Biol. 2019;39(6):1018-25. [DOI:10.1161/ATVBAHA.119.312513] [PMID] [PMCID]
27. Danne O, Möckel M. Choline in acute coronary syndrome: an emerging biomarker with implications for the integrated assessment of plaque vulnerability. Exp Rev Mol Diagn. 2010 Mar 1;10(2):159-71. [DOI:10.1586/erm.10.2] [PMID]
28. Coras R, Kavanaugh A, Boyd T, Huynh D, Lagerborg KA, Xu YJ et al. Choline metabolite, trimethylamine N-oxide (TMAO), is associated with inflammation in psoriatic arthritis. Clin Exp Rheumatol. 2019;37(3):481.
29. Wang H, Jia Y, Wang X, Ma J, Jing Y. Physico-chemical Properties of Magnesium Ionic Liquid Analogous. J Chil Chem. 2012;57(3):1208-12. [DOI:10.4067/S0717-97072012000300003]
30. Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res. 2020;127(4):553-70. [DOI:10.1161/CIRCRESAHA.120.316242] [PMID] [PMCID]
31. Xu H, Duan Z, Miao C, Geng S, Jin Y. Development of a diagnosis model for coronary artery disease. Indian Heart J. 2017;69(5):634-9. [DOI:10.1016/j.ihj.2017.02.022] [PMID] [PMCID]
32. Bishnoi S, Kaushik RM, Rawat A, Dhar M, Kaushik R. Risk factors for angiographically proven coronary artery disease in women in India. Health Care Women Int. 2016;37(12):1357-72. [DOI:10.1080/07399332.2016.1215463] [PMID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc