year 15, Issue 6 (November - December 2021)                   Iran J Med Microbiol 2021, 15(6): 638-657 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shirvany A, Rezayan A H, Alvandi H, Barshan Tashnizi M, Sabahi H. Preparation and Evaluation of a Niosomal Drug Delivery System Containing Cefazolin and Study of Its Antibacterial Activity. Iran J Med Microbiol. 2021; 15 (6) :638-657
1- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
2- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran ,
Abstract:   (1230 Views)

Background and Objective: Infectious diseases are one of the leading causes of death in the world. The use of antibiotics, in addition to limitations and side effects, causes the resistance of microorganisms. The use of drug delivery systems is an effective way to increase drug stability and reduce antibiotic use. This study aimed to load cefazolin into a niosomal drug delivery system.
Materials and Methods: This study was performed in 2018 to investigate the effect of span 60, tween 60, and cholesterol on the synthesis of niosome nanoparticles loaded with cefazolin by the thin layer hydration method. Then the characteristics of synthetic niosome nanoparticles and their antibacterial activity were investigated.
Results: SEM images showed that all nanoparticles are spherical. The encapsulation efficiencies for the first, second, and third formulations were 33%, 19.7%, and 40.76%, respectively. The release of cefazolin from the first, second, and third formulations during 30 days was 48%, 81.5%, and 63%. The particle size and zeta potential of the third niosome formulation were estimated to be 154 nm and -24 mV. The MIC for Escherichia coli and Staphylococcus aureus were 4 and 150 μg/mL, respectively. The niosome nanoparticles prepared with the third formulation show an excellent antibacterial effect against Escherichia coli for six days, and the diameter of its growth inhibition zone remains almost constant.
Conclusion: The optimal formulation of niosome nanoparticles included span 60 (0.060), tween 60 (0.090), and cholesterol (0.046). Continuous and controlled release of cefazolin from the niosome, along with increased drug penetration, reduces the growth of E. coli (ATCC 9637) and S. aureus (ATCC 12600).

Full-Text [PDF 1216 kb]   (337 Downloads) |   |   Full-Text (HTML)  (337 Views)  
Type of Study: Original Research Article | Subject: Nanotechnology In Medicine
Received: 2021/08/6 | Accepted: 2021/11/6 | ePublished: 2021/12/8

1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095-128. [DOI:10.1016/S0140-6736(12)61728-0]
2. Winters C, Gelband H. Part I. the Global Antibiotic Resistance Partnership (GARP). S Afr Med J. 2011;101(8 Pt 2):556-7.
3. Huh AJ, Kwon YJ. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128-45. [DOI:10.1016/j.jconrel.2011.07.002] [PMID]
4. Jamil B, Syed MA. Nano-antimicrobials: A Viable Approach to Tackle Multidrug-Resistant Pathogens. Nanotechnology Applied To Pharmaceutical Technology: Springer; 2017. p. 31-54. [DOI:10.1007/978-3-319-70299-5_2]
5. Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 2013;13(12):1057-98. [DOI:10.1016/S1473-3099(13)70318-9]
6. Elkomy MH, Sultan P, Drover DR, Epshtein E, Galinkin JL, Carvalho B. Pharmacokinetics of prophylactic cefazolin in parturients undergoing cesarean delivery. Antimicrob Agents Chemother. 2014;58(6):3504-13. [DOI:10.1128/AAC.02613-13] [PMID] [PMCID]
7. Kusaba T. Safety and efficacy of cefazolin sodium in the management of bacterial infection and in surgical prophylaxis. Clin Med Ther. 2009;1:CMT. S2096. [DOI:10.4137/CMT.S2096]
8. Yang X, Xia P, Zhang Y, Lian S, Li H, Zhu G, et al. Photothermal nano-antibiotic for effective treatment of multidrug-resistant bacterial infection. ACS Appl. 2020;3(8):5395-406. [DOI:10.1021/acsabm.0c00702]
9. Bagheri A, Chu BS, Yaakob H. Niosomal drug delivery systems: formulation, preparation and applications. World Appl Sci J. 2014;32(8):1671-85.
10. Khan R, Irchhaiya R. Niosomes: a potential tool for novel drug delivery. J Pharm Investig. 2016;46(3):195-204. [DOI:10.1007/s40005-016-0249-9]
11. Shakhova V, Belyaev V, Kastarnova E, Orobets V, Grudeva E, editors. Niosomes: a promising drug delivery system. E3S Web of Conferences; 2020: EDP Sciences. [DOI:10.1051/e3sconf/202017507003]
12. Jankie S, Johnson J, Adebayo AS, Pillai GK, Pinto Pereira LM. Efficacy of Levofloxacin Loaded Nonionic Surfactant Vesicles (Niosomes) in a Model of Pseudomonas aeruginosa Infected Sprague Dawley Rats. Adv Pharmacol Pharm Sci. 2020;2020:8815969. [DOI:10.1155/2020/8815969] [PMID] [PMCID]
13. Bayindir ZS, Yuksel N. Characterization of niosomes prepared with various nonionic surfactants for paclitaxel oral delivery. J Pharm Sci. 2010;99(4):2049-60. [DOI:10.1002/jps.21944] [PMID]
14. Uchegbu IF, Double JA, Turton JA, Florence AT. Distribution, metabolism and tumoricidal activity of doxorubicin administered in sorbitan monostearate (Span 60) niosomes in the mouse. Pharm Res. 1995;12(7):1019-24. [DOI:10.1023/A:1016210515134] [PMID]
15. Sambhakar S, Singh B, Paliwal S, Mishra P. Niosomes as a potential carrier for controlled release of cefuroxime axetil. Asian j biomed pharm sci. 2011;1(1):126-36.
16. Wu ZL, Zhao J, Xu R. Recent Advances in Oral Nano-Antibiotics for Bacterial Infection Therapy. Int J Nanomedicine. 2020;15:9587-610. [DOI:10.2147/IJN.S279652] [PMID] [PMCID]
17. Moaddab M, Nourmohammadi J, Rezayan AH. Bioactive composite scaffolds of carboxymethyl chitosan-silk fibroin containing chitosan nanoparticles for sustained release of ascorbic acid. Eur Polym J. 2018;103:40-50. [DOI:10.1016/j.eurpolymj.2018.03.032]
18. Hamedinasab H, Rezayan AH, Mellat M, Mashreghi M, Jaafari MR. Development of chitosan-coated liposome for pulmonary delivery of N-acetylcysteine. Int J Biol Macromol. 2020;156:1455-63. [DOI:10.1016/j.ijbiomac.2019.11.190] [PMID]
19. Ahmaditabar P, Momtazi‐Borojeni AA, Rezayan AH, Mahmoodi M, Sahebkar A, Mellat M. Enhanced entrapment and improved in vitro controlled release of n‐acetyl cysteine in hybrid PLGA/lecithin nanoparticles prepared using a nanoprecipitation/self‐assembly method. J Cell Biochem. 2017;118(12):4203-9. [DOI:10.1002/jcb.26070] [PMID]
20. Marwa A, Omaima S, Hanaa E-G, Mohammed A-S. Preparation and in-vitro evaluation of diclofenac sodium niosomal formulations. Int J Pharm Sci Res. 2013;4(5):1757.
21. Wang G, Liu SJ, Ueng SW, Chan EC. The release of cefazolin and gentamicin from biodegradable PLA/PGA beads. Int J Pharm. 2004;273(1-2):203-12. [DOI:10.1016/j.ijpharm.2004.01.010] [PMID]
22. Taymouri S, Varshosaz J. Effect of different types of surfactants on the physical properties and stability of carvedilol nano-niosomes. Adv Biomed Res. 2016;5:48. [DOI:10.4103/2277-9175.178781] [PMID] [PMCID]
23. Bhattacharjee S. DLS and zeta potential-what they are and what they are not? J Control Release. 2016;235:337-51. [DOI:10.1016/j.jconrel.2016.06.017] [PMID]
24. Beiranvand S, Eatemadi A, Karimi A. New updates pertaining to drug delivery of local anesthetics in particular bupivacaine using lipid nanoparticles. Nanoscale Res Lett. 2016;11(1):1-10. [DOI:10.1186/s11671-016-1520-8] [PMID] [PMCID]
25. Mirmajidi T, Chogan F, Rezayan AH, Sharifi AM. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int J Pharm. 2021;596:120213. [DOI:10.1016/j.ijpharm.2021.120213] [PMID]
26. Chogan F, Mirmajidi T, Rezayan AH, Sharifi AM, Ghahary A, Nourmohammadi J, et al. Design, fabrication, and optimization of a dual function three-layer scaffold for controlled release of metformin hydrochloride to alleviate fibrosis and accelerate wound healing. Acta Biomater. 2020;113:144-63. [DOI:10.1016/j.actbio.2020.06.031] [PMID]
27. Akbari V, Abedi D, Pardakhty A, Sadeghi-Aliabadi H. Release Studies on Ciprofloxacin Loaded Non-ionic Surfactant Vesicles. Avicenna J Med Biotechnol. 2015;7(2):69-75.
28. Kashef MT, Saleh NM, Assar NH, Ramadan MA. The Antimicrobial Activity of Ciprofloxacin-Loaded Niosomes against Ciprofloxacin-Resistant and Biofilm-Forming Staphylococcus aureus. Infect Drug Resist. 2020;13:1619-29. [DOI:10.2147/IDR.S249628] [PMID] [PMCID]
29. Vasistha P, Ram A. Non-ionic provesicular drug carrier: an overview. Asian J Pharm Clin Res. 2013;6(1):38-42.
30. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery-an overview. Acta Pharm Sin. 2011;1(4):208-19. [DOI:10.1016/j.apsb.2011.09.002]
32. Yaghoobian M, Haeri A, Bolourchian N, Shahhosseni S, Dadashzadeh S. The impact of surfactant composition and surface charge of niosomes on the oral absorption of repaglinide as a BCS II model drug. Int J Nanomedicine. 2020;15:8767. [DOI:10.2147/IJN.S261932] [PMID] [PMCID]
33. Sadeghi S, Bakhshandeh H, Ahangari Cohan R, Peirovi A, Ehsani P, Norouzian D. Synergistic Anti-Staphylococcal Activity Of Niosomal Recombinant Lysostaphin-LL-37. Int J Nanomedicine. 2019;14:9777-92. [DOI:10.2147/IJN.S230269] [PMID] [PMCID]
34. Carafa M, Santucci E, Lucania G. Lidocaine-loaded non-ionic surfactant vesicles: characterization and in vitro permeation studies. Int J Pharm. 2002;231(1):21-32. [DOI:10.1016/S0378-5173(01)00828-6]
35. Akbarzadeh I, Keramati M, Azadi A, Afzali E, Shahbazi R, Chiani M, et al. Optimization, physicochemical characterization, and antimicrobial activity of a novel simvastatin nano-niosomal gel against E. coli and S. aureus. Chem Phys Lipids. 2021;234:105019. [DOI:10.1016/j.chemphyslip.2020.105019] [PMID]
36. Zhu L, Cao X, Xu Q, Su J, Li X, Zhou W. Evaluation of the antibacterial activity of tilmicosin-SLN against Streptococcus agalactiae: in vitro and in vivo studies. Int J Nanomedicine. 2018;13:4747-55. [DOI:10.2147/IJN.S168179] [PMID] [PMCID]
37. Wang T, Chen X, Lu M, Li X, Zhou W. Preparation, characterisation and antibacterial activity of a florfenicol-loaded solid lipid nanoparticle suspension. IET Nanobiotechnol. 2015;9(6):355-61. [DOI:10.1049/iet-nbt.2015.0012] [PMID]
38. Ghafelehbashi R, Akbarzadeh I, Tavakkoli Yaraki M, Lajevardi A, Fatemizadeh M, Heidarpoor Saremi L. Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int J Pharm. 2019;569:118580. [DOI:10.1016/j.ijpharm.2019.118580] [PMID]
39. Khan S, Akhtar MU, Khan S, Javed F, Khan AA. Nanoniosome‐encapsulated levoflaxicin as an antibacterial agent against Brucella. J Basic Microbiol. 2020;60(3):281-90. [DOI:10.1002/jobm.201900454] [PMID]
40. Chen S-T, Chien H-W, Cheng C-Y, Huang H-M, Song T-Y, Chen Y-C, et al. Drug-release dynamics and antibacterial activities of chitosan/cefazolin coatings on Ti implants. Prog Org Coat. 2021;159:106385. [DOI:10.1016/j.porgcoat.2021.106385]
41. Wang Y, Zhu L, Dong Z, Xie S, Chen X, Lu M, et al. Preparation and stability study of norfloxacin-loaded solid lipid nanoparticle suspensions. Colloids Surf B Biointerfaces. 2012;98:105-11. [DOI:10.1016/j.colsurfb.2012.05.006] [PMID]
42. Zafari M, Adibi M, Chiani M, Bolourchi N, Barzi SM, Shams Nosrati MS, et al. Effects of cefazolin-containing niosome nanoparticles against methicillin-resistant Staphylococcus aureus biofilm formed on chronic wounds. Biomed Mater. 2021;16(3):035001. [DOI:10.1088/1748-605X/abc7f2] [PMID]
43. Bhise K, Sau S, Kebriaei R, Rice SA, Stamper KC, Alsaab HO, et al. Combination of Vancomycin and Cefazolin Lipid Nanoparticles for Overcoming Antibiotic Resistance of MRSA. Materials (Basel). 2018;11(7):1245. [DOI:10.3390/ma11071245] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc