year 15, Issue 6 (November - December 2021)                   Iran J Med Microbiol 2021, 15(6): 658-675 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghanbari Sardari M, Yahya Raeyat R, Mehrabi M, Zahraiee Salehi T, Mehrzad Salakojani J. Alterations in Gene Expression of Interferon and Tumor Necrosis Factor‐α in Human Blood Macrophage-Like Monocytes Induced by Clinical and Standard Salmonella typhi Strains in vitro. Iran J Med Microbiol 2021; 15 (6) :658-675
URL: http://ijmm.ir/article-1-1407-en.html
1- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
2- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran , ryahya@ut.ac.ir
3- Department of laboratory Medicine, Faculty of Medicine, Borujerd Branch, Islamic Azad University, Borujerd, Iran
Abstract:   (3003 Views)

Background and Objective: Salmonella typhi as a human pathogen stimulates the human immune system and triggers gene expression changing its pathogenesis. Therefore, we aimed to investigate the expression levels of ifn-γ and tnf-α cytokines in human blood macrophage-like monocytes in dealing with clinical and standard samples of Salmonella typhi in vivo.
Materials and Methods: In this cross-sectional descriptive study, a total of 60 stool samples from patients with gastroenteritis were cultured and biochemical tests were used to diagnose Salmonella. Also, venous blood samples were taken for peripheral blood mononuclear cell (PBMC) isolation, and PBMCs were cultured in a culture medium containing 4×103cfu/mL treatments of Salmonella typhi pathogen and standard. Cytotoxicity tests were also performed to determine the concentrations. Finally, quantitative expression levels of ifn-γ and tnf-α were measured and the results were analyzed by statistical tests.
Results: The results of the cytotoxicity test showed the use of Salmonella typhi concentrations for treatment in an authorized culture medium at a concentration of 4×103 cfu / mL. In comparison to control samples, a significant increased expression levels of tnf-α gene have been detected in pathogen strain and ATCC strain (P<0.05) (P=0.0198). Furthermore, significantly increased expression levels of IFN-γ gene have been detected in the pathogen strain and ATCC strain (P<0.05) in comparison to the control sample (P=0.0001).
Conclusion: Increased and significant expression of ifn-γ and tnf-α cytokines in the sample group treated with pathogen strain and ATCC strain indicates polarization of macrophages stimulated by Salmonella typhi in vitro.

Full-Text [PDF 1247 kb]   (844 Downloads) |   |   Full-Text (HTML)  (1032 Views)  
Type of Study: Original Research Article | Subject: Molecular Microbiology
Received: 2021/07/28 | Accepted: 2021/11/5 | ePublished: 2021/12/8

References
1. Coburn B, Grassl GA, Finlay BB. Salmonella, the host and disease: a brief review. Immunol Cell Biol. 2007;85(2):112-8. [DOI:10.1038/sj.icb.7100007] [PMID]
2. Herrero-Fresno A, Olsen JE. Salmonella Typhimurium metabolism affects virulence in the host - A mini-review. Food Microbiol. 2018;71:98-110. [DOI:10.1016/j.fm.2017.04.016] [PMID]
3. Ramachandran G, Panda A, Higginson EE, Ateh E, Lipsky MM, Sen S, et al. Virulence of invasive Salmonella Typhimurium ST313 in animal models of infection. PLoS Negl Trop Dis. 2017;11(8):e0005697. [DOI:10.1371/journal.pntd.0005697] [PMID] [PMCID]
4. Sun H, Wan Y, Du P, Bai L. The Epidemiology of Monophasic Salmonella Typhimurium. Foodborne Pathog Dis. 2020;17(2):87-97. [DOI:10.1089/fpd.2019.2676] [PMID]
5. Broz P, Ohlson MB, Monack DM. Innate immune response to Salmonella typhimurium, a model enteric pathogen. Gut Microbes. 2012;3(2):62-70. [DOI:10.4161/gmic.19141] [PMID] [PMCID]
6. Linehan SA, Holden DW. The interplay between Salmonella typhimurium and its macrophage host-what can it teach us about innate immunity? Immunol lett. 2003;85(2):183-92. [DOI:10.1016/S0165-2478(02)00227-4]
7. Bazrgari N, Garoosi GA, Dadar M. Genetic Diversity and Phylogenetic Relationship of Clinical Isolates of Brucella melitensis Based on Gene Polymorphism of β Subunit of RNA Polymerase (rpoB) Gene in Iran. Iran J Med Microbiol. 2020;14(5):425-40. [DOI:10.30699/ijmm.14.5.425]
8. Rosenberger CM, Scott MG, Gold MR, Hancock RE, Finlay BB. Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J Immunol. 2000;164(11):5894-904. [DOI:10.4049/jimmunol.164.11.5894] [PMID]
9. Khezri M, Rezaei M, Mohabbati Mobarez A. Detection of viable but non-culturable state of Escherichia coli O157: H7 using reverse transcription PCR. Iran J Med Microbiol. 2019;12(6):390-8. [DOI:10.30699/ijmm.12.6.390]
10. Monson MS, Bearson BL, Sylte MJ, Looft T, Lamont SJ, Bearson SMD. Transcriptional response of blood leukocytes from turkeys challenged with Salmonella enterica serovar Typhimurium UK1. Vet Immunol Immunopathol. 2021;232:110181. [DOI:10.1016/j.vetimm.2020.110181] [PMID]
11. Sheikh A, Charles RC, Sharmeen N, Rollins SM, Harris JB, Bhuiyan MS, et al. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh. PLoS Negl Trop Dis. 2011;5(12):e1419. [DOI:10.1371/journal.pntd.0001419] [PMID] [PMCID]
12. Bardi GT, Smith MA, Hood JL. Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine. 2018;105:63-72. [DOI:10.1016/j.cyto.2018.02.002] [PMID] [PMCID]
13. Atri C, Guerfali FZ, Laouini D. Role of Human Macrophage Polarization in Inflammation during Infectious Diseases. Int J Mol Sci. 2018;19(6):1801. [DOI:10.3390/ijms19061801] [PMID] [PMCID]
14. Kaur J, Jain SK. Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol Res. 2012;167(4):199-210. [DOI:10.1016/j.micres.2011.08.001] [PMID]
15. Kim JE, Phan TX, Nguyen VH, Dinh-Vu HV, Zheng JH, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1beta. Theranostics. 2015;5(12):1328-42. [DOI:10.7150/thno.11432] [PMID] [PMCID]
16. Sheppe AEF, Kummari E, Walker A, Richards A, Hui WW, Lee JH, et al. PGE2 Augments Inflammasome Activation and M1 Polarization in Macrophages Infected With Salmonella Typhimurium and Yersinia enterocolitica. Front Microbiol. 2018;9:2447. [DOI:10.3389/fmicb.2018.02447] [PMID] [PMCID]
17. Hojati P. Isolation and identification of Salmonella poultry ERic-PCR and serological methods: Dissertation of Poultry Veterinary. Tehran. Science and Research Azad ….
18. Panda SK, Ravindran B. Isolation of human PBMCs. Bio-protocol. 2013;3(3):e323-e. [DOI:10.21769/BioProtoc.323]
19. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, et al. Genetics of gene expression and its effect on disease. Nature. 2008;452(7186):423-8. [DOI:10.1038/nature06758] [PMID]
20. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, GuhaThakurta D, et al. An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet. 2005;37(7):710-7. [DOI:10.1038/ng1589] [PMID] [PMCID]
21. Dos Santos AMP, Ferrari RG, Conte-Junior CA. Virulence Factors in Salmonella Typhimurium: The Sagacity of a Bacterium. Curr Microbiol. 2019;76(6):762-73. [DOI:10.1007/s00284-018-1510-4] [PMID]
22. Furter M, Sellin ME, Hansson GC, Hardt WD. Mucus Architecture and Near-Surface Swimming Affect Distinct Salmonella Typhimurium Infection Patterns along the Murine Intestinal Tract. Cell Rep. 2019;27(9):2665-78 e3. [DOI:10.1016/j.celrep.2019.04.106] [PMID] [PMCID]
23. Herman R, Bennett-Ness C, Maqbool A, Afzal A, Leech A, Thomas GH. The Salmonella enterica serovar Typhimurium virulence factor STM3169 is a hexuronic acid binding protein component of a TRAP transporter. Microbiology. 2020;166(10):981. [DOI:10.1099/mic.0.000967] [PMID] [PMCID]
24. Muraille E, Leo O, Moser M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front immunol. 2014;5:603. [DOI:10.3389/fimmu.2014.00603]
25. Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89(4):557-63. [DOI:10.1189/jlb.0710409] [PMID] [PMCID]
26. Saqib U, Sarkar S, Suk K, Mohammad O, Baig MS, Savai R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget. 2018;9(25):17937. [DOI:10.18632/oncotarget.24788] [PMID] [PMCID]
27. Orecchioni M, Ghosheh Y, Pramod AB, Ley K. Macrophage Polarization: Different Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated Macrophages. Front immunol. 2019;10:1084. [DOI:10.3389/fimmu.2019.01084] [PMID] [PMCID]
28. Weyand CM, Zeisbrich M, Goronzy JJ. Metabolic signatures of T-cells and macrophages in rheumatoid arthritis. Curr Opin Immunol. 2017;46:112-20. [DOI:10.1016/j.coi.2017.04.010] [PMID] [PMCID]
29. Liu L, Guo H, Song A, Huang J, Zhang Y, Jin S, et al. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-small ka, CyrillicB and MAPK pathways. BMC Immunol. 2020;21(1):32. [DOI:10.1186/s12865-020-00355-y] [PMID] [PMCID]
30. Rath M, Muller I, Kropf P, Closs EI, Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front immunol. 2014;5:532. [DOI:10.3389/fimmu.2014.00532] [PMID] [PMCID]
31. Jimenez-Garcia L, Higueras MA, Herranz S, Hernandez-Lopez M, Luque A, de Las Heras B, et al. A hispanolone-derived diterpenoid inhibits M2-Macrophage polarization in vitro via JAK/STAT and attenuates chitin induced inflammation in vivo. Biochem Pharmacol. 2018;154:373-83. [DOI:10.1016/j.bcp.2018.06.002] [PMID]
32. Qin H, Holdbrooks AT, Liu Y, Reynolds SL, Yanagisawa LL, Benveniste EN. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J Immunol. 2012;189(7):3439-48. [DOI:10.4049/jimmunol.1201168] [PMID] [PMCID]
33. Platanitis E, Decker T. Regulatory Networks Involving STATs, IRFs, and NFkappaB in Inflammation. Front immunol. 2018;9:2542. [DOI:10.3389/fimmu.2018.02542] [PMID] [PMCID]
34. Febriza A, Natzir R, Hatta M, As' ad S, Kaelan C, Kasim VN, et al. The Role of IL-6, TNF-α, and VDR in Inhibiting the Growth of Study. Open Microbiol. 2020;14(1). [DOI:10.2174/1874285802014010065]
35. Wang H, Luo H, Wan X, Fu X, Mao Q, Xiang X, et al. TNF-α/IFN-γ profile of HBV-specific CD4 T cells is associated with liver damage and viral clearance in chronic HBV infection. Journal of hepatology. 2020;72(1):45-56. [DOI:10.1016/j.jhep.2019.08.024] [PMID]
36. Hu JL, Yu H, Kulkarni RR, Sharif S, Cui SW, Xie MY, et al. Modulation of cytokine gene expression by selected Lactobacillus isolates in the ileum, caecal tonsils and spleen of Salmonella-challenged broilers. Avian Pathol. 2015;44(6):463-9. [DOI:10.1080/03079457.2015.1086725] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc