year 15, Issue 4 (July & August 2021)                   Iran J Med Microbiol 2021, 15(4): 369-383 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nouri S, Roghanian R, Emtizi G. Review on Biological Synthesis of Nano-Hydroxyapatite and Its Application in Nano-Medicine. Iran J Med Microbiol. 2021; 15 (4) :369-383
1- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
2- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran ,
Abstract:   (727 Views)

Hydroxyapatite (HA) has many applications in medicine, dentistry, diagnosis, drug delivery systems, sewage treatment, bone remodeling, concentrating bacteria, covering implants, and antibacterial activity. Despite the numerous current applications of calcium phosphate compounds, particularly HA, their producing methods are being investigated to find the best processes. Several chemical and biological methods are used in calcium phosphate compounds synthesis. Researches have shown that compared to micrometer models, nanostructured HA has higher mechanical features and better biocompatibility in the human body. These properties optimize when nanometer components of HA are in similar size and shape with the least agglomerations. Biomineralization by microorganisms, which is a bacterial route, is a recent HA synthesis method. This paper is a review on the biosynthesis of HA emphasizing microbial methods. In this method, some bacteria and mold could be used in the nanometer production of HA. This type of bacterium commonly has a high amount of alkaline phosphatase enzymes. Desirable similarity to natural HA in the human body is the noticeable features of bacterial HA. Uniformity in the shape and size of synthesized particles that have the same crystallization is of other merits. Producing bacterial HA is easily reachable, one-step, inexpensive, harmless, and with high purity, and contrary to chemical synthesis, does not need heat treatment and precise pH adjustment.

Full-Text [PDF 1254 kb]   (126 Downloads) |   |   Full-Text (HTML)  (122 Views)  
Type of Study: Review | Subject: Nanotechnology In Medicine
Received: 2021/03/2 | Accepted: 2021/07/11 | ePublished: 2021/08/16

1. Emtiazi G, Shapoorabadi FA, Mirbagheri M. Chemical and Biological Synthesis of HydroxyApatite: Advantage and Application. Int J Microbiol Curr Res 2019; 1(1):20-2. [DOI:10.18689/ijmr-1000103]
2. Wang L, Nancollas GH. Calcium orthophosphates: crystallization and dissolution. Chem Rev. 2008; 108(11):4628-69. [DOI:10.1021/cr0782574] [PMID] [PMCID]
3. Kumar RR, Wang M. Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system. Mater Lett .2002; 55(3):133-7. [DOI:10.1016/S0167-577X(01)00635-8]
4. Ahmadzadeh E, Talebnia F, Tabatabaei M, Ahmadzadeh H, Mostaghaci B. Osteoconductive composite graft based on bacterial synthesized hydroxyapatite nanoparticles doped with different ions: from synthesis to in vivo studies. Nanomed Nanotechnol Biol Med. 2016; 12(1):1387-95. [DOI:10.1016/j.nano.2016.01.020] [PMID]
5. Chopra Y, Kumar R, Begam H. Effect of Temperature and Titania Doping on Structure of Hydroxyapatite. In: Rizvanov AA, Singh BK, Ganasala P. Advances in Biomedical Engineering and Technology. Lecture Notes in Bioengineering. Singapore: Springer;2021. [DOI:10.1007/978-981-15-6329-4_24] [PMCID]
6. Corno M, Busco C, Bolis V, Tosoni S, Ugliengo P.Water adsorption on the stoichiometric (001) and (010) surfaces of hydroxyapatite: a periodic B3LYP study. Langmuir. 2009; 25(4):2188-98. [DOI:10.1021/la803253k] [PMID]
7. Benaqqaa C, Chevaliera J, Daouia MS, Fantozzi G. Slow crack growth behavior of hydroxyapatite ceramics. Biomaterials. 2005; 26(31):6106-12. [DOI:10.1016/j.biomaterials.2005.03.031] [PMID]
8. Padmanabhan SK, Gervaso F, Sannino A, Licciulli A. Preparation and characterization of Collagen/hydroxyapatite microsphere composite scaffold for bone regeneration. Key Eng Mater. 2014; 587(1-3):239-44. [DOI:10.4028/]
9. Babu NR, Manwatkar S, Rao KP, Kumar TSS. Bioactive coatings on 316L stainless steel implants. Trends Biomater Artif Organs. 2004; 17(2):43-7.
10. Tin-Oo MM, Gopalakrishnan V, Samsuddin AR, Al Salihi KA, Shamsuria O. Antibacterial property of locally produced hydroxyapatite. Arch Orofac Sci .2007; 2:41-4.
11. Assadi z, Emtiazi G, Zarrabi A. Hyperbranched polyglycerol coated on copper oxide nanoparticles as a novel core-shell nano-carrier hydrophilic drug delivery model. J Mol Liq. 2018; 250(1):375-80. [DOI:10.1016/j.molliq.2017.12.031]
12. Palazzoa B, Sidotia TMC, Roveria N, Tampierib A, Sandrib M, Bertolazzic L, Controlled drug delivery from porous hydroxyapatite grafts: An experimental and theoretical approach. Mater Sci Eng C. 2005; 25(2):207-13. [DOI:10.1016/j.msec.2005.01.011]
13. Berry ED, Siragusa GR. Hydroxyapatite adherence as a means to concentrate bacteria. Appl Environ Microbiol. 1997; 6(1):4069-74. [DOI:10.1128/aem.63.10.4069-4074.1997] [PMID] [PMCID]
14. Handley-Sidhu S, Renshaw JC, Yong P, Kerley R, Macaskie LE. Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions. Biotechnol Lett. 2011; 33:79-87. [DOI:10.1007/s10529-010-0391-9] [PMID]
15. Tschoppe P, Zandim D L, Martus P, Kielbassa AM. Enamel and dentine remineralization by nano-hydroxyapatite. J Dent. 2011; 39(6): 430-7. [DOI:10.1016/j.jdent.2011.03.008] [PMID]
16. Wang S, Lei Y, Zhang Y, Tang J, Shen G, Yu R. Hydroxyapatite nanoarray-based cyanide biosensor. Anal Biochem. 2010; 398(2):191-7. [DOI:10.1016/j.ab.2009.11.029] [PMID]
17. Tsuchida T, Yoshioka T, Sakama S, Takeguchi T, Ueda W. Synthesis of Biogasoline from Ethanol over Hydroxyapatite Catalyst. Ind Eng Chem Res. 2008; 47(1):1443-52. [DOI:10.1021/ie0711731]
18. Rhee SH. Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials. 2002; 23(4):1147-52. [DOI:10.1016/S0142-9612(01)00229-0]
19. Shojai MS, Khorasani MT, Dinpanah-Khoshdargi E, Jamshidi A. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 2013; 9(8):7591-621. [DOI:10.1016/j.actbio.2013.04.012] [PMID]
20. Rahavi SS, Ghaderi O, Monshi, Fathi MH. A comparative study on physicochemical properties of hydroxyapatite powders derived from natural and synthetic sources. Russ J Non-ferrous Metals. 2017; 58: 276-86. [DOI:10.3103/S1067821217030178]
21. Ruksudjarit A, Pengpat K, Rujijanagul G, Tunkasiri T. Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone. Curr Appl Phys. 2008; 8:270-2. [DOI:10.1016/j.cap.2007.10.076]
22. Assadi z, Emtiazi G, Zarrabi A. Novel synergistic activities of tetracycline copper oxide nanoparticles integrated into chitosan micro particles for delivery against multiple drug resistant strains: Generation of reactive oxygen species (ROS) and cell death. J Drug Deliv Sci Technol. 2018; 44(1):65-70. [DOI:10.1016/j.jddst.2017.11.017]
23. Assadi z, Emtiazi G, Zarrabi A. Opto-electronic and antibacterial activity investigations of mono-dispersed nanostructure copper oxide prepared by a novel method: reduction of reactive oxygen species (ROS). J Mater Sci Mater. 2018; 29(3):1798-807. [DOI:10.1007/s10854-017-8088-7]
24. Mirhendi M, Emtiazi G, Roghanian R. Production of nano zinc, zinc sulphide and nanocomplex of magnetite zinc oxide by Brevundimonas diminuta and Pseudomonas stutzeri. IET Nanobiotechnol. 2013; 7(4):135-9. [DOI:10.1049/iet-nbt.2012.0032] [PMID]
25. Mirhendi M, Emtiazi G, Roghanian R. Antibacterial Activities of Nano Magnetite ZnO Produced in Aerobic and Anaerobic Condition by Pseudomonas stutzeri. Jundishapur J Microbiol. 2013; 6(10): e10254. [DOI:10.5812/jjm.10254]
26. Soltani Nezhad S, Rabbani Khorasgani M, Emtiazi G, Yaghoobi MM, Shakeri Sh. Isolation of copper oxide (CuO) nanoparticles resistant Pseudomonas strains from soil and investigation on possible mechanism for resistance. World J Microbiol Biotechnol. 2014; 30:809-17. [DOI:10.1007/s11274-013-1481-3] [PMID]
27. Emtiazi G. Microbial enzymes induced nano-hydroxyapatite and calcite precipitation. DBpia korean confrancce. 2017; 26.
28. Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease. J Nippon Med Sch. 2010; 77:4-12. [DOI:10.1272/jnms.77.4] [PMID]
29. Ghashghaei S, Emtiazi G. Production of hydroxyapatite nanoparticles using tricalcium- phosphate by alkanindiges illinoisensis. J Nanomater Mol Nanotechnol. 2013; 2:5. [DOI:10.4172/2324-8777.1000121]
30. Ledo H M, Thackray AC, Jones IP, Marquis PM, Macaskie LE, Sammons RL. Microstructure and composition of biosynthetically synthesized hydroxyapatite. J Mater Sci Mate Med. 2008; 19(11):3419-27. [DOI:10.1007/s10856-008-3485-3] [PMID]
31. Kim EE, Wyckoff HW. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol. 1991; 218(2):449-64. [DOI:10.1016/0022-2836(91)90724-K]
32. Mostaghaci B, Fathi MH, SheikhZeinoddin M, Soleimanianzad S. Bacterial synthesis of nanostructured hydroxyapatite using Serratia marcescens PTCC1187, Int J Nanotechnol. 2009; 6:1015-30. [DOI:10.1504/IJNT.2009.027564]
33. Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW. Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J .2000; 17:305-18. [DOI:10.1080/782198884]
34. Ghashghaei S, Emtiazi G. Production of calcite nanocrystal by a urease-positive strain of Enterobacter ludwigii and study of its structure by SEM. Curr microbiol. 2013; 67(4):406-13. [DOI:10.1007/s00284-013-0379-5] [PMID]
35. Ghashghaei S, Emtiazi G. The Methods of Nanoparticle Synthesis Using Bacteria as Biological Nanofactories, their Mechanisms and Major Applications. Curr Bionanotechnol. 2016; 1(1):3-17. [DOI:10.2174/2213529401999140310104655]
36. Jokic B, Tanaskovic D, Jankovic-Castvan I, Drmanic S, Petrovic R. Synthesis of nanosized calcium hydroxyapatite particles by the catalytic decomposition of urea with urease. J Mater Res. 2006; 22(5):1156-61. [DOI:10.1557/jmr.2007.0170]
37. He F, Lian B, Liu SR, Gong GH. Induced synthesis of hydroxyapatite by Aspergillus niger. Wei Sheng Wu Xue Bao. 2011. 51(3):417-22.
38. Soni SK. Phytase from Aspergillus niger NCIM 563: Isolation Purification, Characterization and its Applications [PhD thesis]. Maharashtra India: univ. Pune; 2009.
39. Gupta R, Mozumdar S, Chaudhury NK. Effect of ethanol variation on the internal environment of sol-gel bulk and thin films with aging. Biosens Bioelectron. 2005; 21(4):549-56. [DOI:10.1016/j.bios.2004.12.002] [PMID]
40. Hsieh M, Perng L, Chin T, Perng H. Phase purity of sol-gel-derived hydroxyapatite ceramic. Biomaterials. 2001; 22(19): 2601-7. [DOI:10.1016/S0142-9612(00)00448-8]
41. Satta G, Pompei R, Grazi G, Cornaglia G. Phosphatase activity is a constant feature of all isolates of all major specice of the family Entrrobacteriaceae. J Clin Microbiol. 1988; 26(12): 2637-41. [DOI:10.1128/jcm.26.12.2637-2641.1988] [PMID] [PMCID]
42. Ganachari SV, Bevinakatti AA, Yaradoddi JS, Banapurmath NR, Hunashyal AM, Shettar AS. Rapid synthesis, characterization, and studies of hydroxyapatite nanoparticles. Adv Mater Sci Res .2017; 1:1-8.
43. Sassoni E. Hydroxyapatite and other calcium phosphates for the conservation of cultural heritage: A Review. Materials. 2018; 11(4):557. [DOI:10.3390/ma11040557] [PMID] [PMCID]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc