year 15, Issue 3 (May - Jun 2021)                   Iran J Med Microbiol 2021, 15(3): 302-316 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khajeh E, Jamshidian-Mojaver M, Naeemipour M, Farzin H. The Identification of a Novel Peptide Derived from Lactoferrin Isolated from Camel Milk with Potential Antimicrobial Activity. Iran J Med Microbiol. 2021; 15 (3) :302-316
1- Department of Biotechcology, Sabzevar Branch, Islamic Azad University of Sabzevar, Sabzevar, Iran
2- Mashhad Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran. ,
3- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
4- Mashhad Branch, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran.
Abstract:   (1127 Views)

Background and Objective: Antimicrobial peptides have attracted significant attention in recent decades because of their properties, such as rapid bactericidal effects, having a wide spectrum of activity, and a rare development of drug resistance. The purpose of this study was to examine the antibacterial activity of a peptide derived from the lactoferrin isolated from camel milk against Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii.
Materials and Methods: In the present study, by means of bioinformatics, an antibacterial peptide was potentially identified as candidates in lactoferrin of camel milk, and an appropriate peptide was selected based on defined criteria. The Pepsin-Camel-Lac1 peptide was synthesized. The methyl thiazolyl diphenyl-tetrazolium bromide assay was conducted to examine the toxicity of Pepsin-Camel-Lac1 against a cell line. Three pathogenic bacteria, namely S. aureus, P. aeruginosa, and A. baumannii were analyzed to assess the antibacterial activity of Pepsin-Camel-Lac1 peptide.
Results: The results showed that the newly-identified peptide had no toxicity against the cell line. The minimum inhibitory concentration values of Pepsin-Camel-Lac1 against S. aureus, P. aeruginosa, and A. baumannii were 31.25 µg/mL, 31.25 µg/mL, and 62.5 µg/mL, respectively.
Conclusion: It seems that the growth of S. aureus, P. aeruginosa, and A. baumannii was not affected by Pepsin-Camel-Lac1 treatment in the bacterial culture medium.

Full-Text [PDF 904 kb]   (481 Downloads) |   |   Full-Text (HTML)  (730 Views)  
Type of Study: Original Research Article | Subject: Antimicrobial Substances
Received: 2020/04/25 | Accepted: 2021/02/24 | ePublished: 2021/06/28

1. Bullen J, Rogers HJ, Leigh L. Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Br Med J. 1972;1(5792):69-75. [DOI:10.1136/bmj.1.5792.69]
2. Hoshino A, Hisayasu S, Shimada T. Complete sequence analysis of rat transferrin and expression of transferrin but not lactoferrin in the digestive glands. Comparative Biochemistry and Physiology Part B: J. Biochem. Mol. Biol. 1996;113(3):491-7. [DOI:10.1016/0305-0491(95)02068-3]
3. Baker EN, Baker HM, Kidd RD. Lactoferrin and transferrin: functional variations on a common structural framework. Biochem. Cell Biol. 2002;80(1):27-34. [DOI:10.1139/o01-153]
4. Legrand D, Mazurier J. A critical review of the roles of host lactoferrin in immunity. Biometals. 2010;23(3):365-76. [DOI:10.1007/s10534-010-9297-1]
5. Baker E, Baker H. Lactoferrin. Cell. Mol. Life Sci. 2005;62(22):2531. [DOI:10.1007/s00018-005-5368-9]
6. Anderson BF, Baker HM, Norris GE, Rice DW, Baker EN. Structure of human lactoferrin: Crystallographic structure analysis and refinement at 2• 8 Å resolution. J. Mol. Biol. 1989;209(4):711-34. [DOI:10.1016/0022-2836(89)90602-5]
7. Moore SA, Anderson BF, Groom CR, Haridas M, Baker EN. Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J. Mol. Biol. 1997;274(2):222-36. [DOI:10.1006/jmbi.1997.1386]
8. Karthikeyan S, Paramasivam M, Yadav S, Srinivasan A, Singh TP. Structure of buffalo lactoferrin at 2.5 Å resolution using crystals grown at 303 K shows different orientations of the N and C lobes. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1999;55(11):1805-13. [DOI:10.1107/S0907444999010951]
9. Sharma AK, Paramasivam M, Srinivasan A, Yadav M, Singh TP. Three-dimensional structure of mare diferric lactoferrin at 2.6 Å resolution. J. Mol. Biol. 1999;289(2):303-17. [DOI:10.1006/jmbi.1999.2767]
10. Khan JA, Kumar P, Paramasivam M, Yadav RS, Sahani MS, Sharma S, et al. Camel lactoferrin, a transferrin-cum-lactoferrin: crystal structure of camel apolactoferrin at 2.6 Å resolution and structural basis of its dual role. J. Mol. Biol. 2001;309(3):751-61. [DOI:10.1006/jmbi.2001.4692]
11. Conesa C, Sánchez L, Rota C, Pérez M-D, Calvo M, Farnaud S, et al. Isolation of lactoferrin from milk of different species: calorimetric and antimicrobial studies. Comparative Biochemistry and Physiology Part B: J. Biochem. Mol. Biol. 2008;150(1):131-9. [DOI:10.1016/j.cbpb.2008.02.005]
12. Magjeed NA. Corrective effect of milk camel on some cancer biomarkers in blood of rats intoxicated with aflatoxin B1. J. Saudi Chem. Soc. 2005;9:253-63.
13. Agrawal RP, Saran S, Sharma P, Gupta RP, Kochar DK, Sahani MS. Effect of camel milk on residual β-cell function in recent onset type 1 diabetes. Diabetes Res. Clin. Pract. 2007;77(3):494-5. [DOI:10.1016/j.diabres.2007.01.012]
14. Quan S, Tsuda H, Miyamoto T. Angiotensin i‐converting enzyme inhibitory peptides in skim milk fermented with lactobacillus helveticus 130b4 from camel milk in inner mongolia, china. J. Sci. Food Agric. 2008;88(15):2688-92. [DOI:10.1002/jsfa.3394]
15. Yen C-C, Shen C-J, Hsu W-H, Chang Y-H, Lin H-T, Chen H-L, et al. Lactoferrin: an iron-binding antimicrobial protein against Escherichia coli infection. Biometals. 2011;24(4):585-94. [DOI:10.1007/s10534-011-9423-8]
16. Kirkpatrick CH, Green I, Rich RR, Schade AL. Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J. Infect. Dis. 1971;124(6):539-44. [DOI:10.1093/infdis/124.6.539]
17. Arnold R, Brewer M, Gauthier J. Bactericidal activity of human lactoferrin: sensitivity of a variety of microorganisms. Infect. Immun. 1980;28(3):893-8. [DOI:10.1128/iai.28.3.893-898.1980]
18. Clare D, Swaisgood H. Bioactive milk peptides: a prospectus. J. Dairy Sci.2000;83(6):1187-95. [DOI:10.3168/jds.S0022-0302(00)74983-6]
19. Mills S, Ross R, Hill C, Fitzgerald G, Stanton C. Milk intelligence: Mining milk for bioactive substances associated with human health. Int. Dairy J. 2011;21(6):377-401. [DOI:10.1016/j.idairyj.2010.12.011]
20. Martin E, Ganz T, Lehrer RI. Defensins and other endogenous peptide antibiotics of vertebrates. J. Leukocyte Biol. 1995;58(2):128-36. [DOI:10.1002/jlb.58.2.128]
21. Wang Z, Wang G. APD: the antimicrobial peptide database. Nucleic Acids Res. 2004;32(suppl_1):D590-D2. [DOI:10.1093/nar/gkh025]
22. Yamauchi K, Tomita M, Giehl T, Ellison Rr. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 1993;61(2):719-28. [DOI:10.1128/iai.61.2.719-728.1993]
23. Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K. Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J J. Dairy Sci . 1991;74(12):4137-42. [DOI:10.3168/jds.S0022-0302(91)78608-6]
24. Bellamy W, Takase M, Yamauchi K, Wakabayashi H, Kawase K, Tomita M. Identification of the bactericidal domain of lactoferrin. BIOCHIM BIOPHYS ACTA PROTEIN STRUCT MOLEC ENZYM . 1992;1121(1-2):130-6. [DOI:10.1016/0167-4838(92)90346-F]
25. Farnaud S, Evans RW. Lactoferrin-a multifunctional protein with antimicrobial properties. Mol. Immunol. 2003;40(7):395-405. [DOI:10.1016/S0161-5890(03)00152-4]
26. Elbarbary HA, Abdou AM, Park EY, Nakamura Y, Mohamed HA, Sato K. Novel antibacterial lactoferrin peptides generated by rennet digestion and autofocusing technique. Int. Dairy J. 2010;20(9):646-51. [DOI:10.1016/j.idairyj.2009.12.019]
27. Benkerroum N, Mekkaoui M, Bennani N, Hidane K. Antimicrobial activity of camel's milk against pathogenic strains of Escherichia coli and Listeria monocytogenes. Int. J. Dairy Technol. 2004;57(1):39-43. [DOI:10.1111/j.1471-0307.2004.00127.x]
28. El Sayed I, Ruppanner R, Ismail A, Champagne CP, Assaf R. Antibacterial and antiviral activity of camel milk protective proteins. J. Dairy Res. 1992;59(2):169-75. [DOI:10.1017/S0022029900030417]
29. Mehrin B, Saeid Z, Maryam I, Samane LA, Somaye B, Mahbobe M, et al. The Extract of Lactoperoxidase Enzyme from Camel Milk Using Chromatography Methods and Its Antibacterial Effects on Pseudomonas Aeruginosa". Clin. Biochem. 2011;13(44):S92. [DOI:10.1016/j.clinbiochem.2011.08.208]
30. Brouwer CP, Rahman M, Welling MM. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides. 2011;32(9):1953-63. [DOI:10.1016/j.peptides.2011.07.017]
31. Agyei D, Tsopmo A, Udenigwe CC. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal. Bioanal. Chem. 2018;410(15):3463-72. [DOI:10.1007/s00216-018-0974-1]
32. Dziuba B, Dziuba M. New milk protein-derived peptides with potential antimicrobial activity: An approach based on bioinformatic studies. Int. J. Mol. Sci. 2014;15(8):14531-45. [DOI:10.3390/ijms150814531]
33. Korhonen H, Pihlanto A. Bioactive peptides: production and functionality. Int. Dairy J. 2006;16(9):945-60. [DOI:10.1016/j.idairyj.2005.10.012]
34. Mizutani K, Toyoda M, Mikami B. X-ray structures of transferrins and related proteins. Biochim Biophys Acta. 2012;1820(3):203-11. [DOI:10.1016/j.bbagen.2011.08.003]
35. Dziuba M, Darewicz M. Food proteins as precursors of bioactive peptides-classification into families. Food Sci. Technol. Int. 2007;13(6):393-404. [DOI:10.1177/1082013208085933]
36. Dziuba J, Iwaniak A. Chapter 27 Database of Protein and Bioactive Peptide Sequences. Nutraceutical Sci. Technol. 2006;4:543. [DOI:10.1201/9781420028836.sec6]
37. Benkerroum N. Antimicrobial peptides generated from milk proteins: a survey and prospects for application in the food industry. A review. Int. J. Dairy Technol. 2010;63(3):320-38. [DOI:10.1111/j.1471-0307.2010.00584.x]
38. Agyei D, Danquah MK. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol. Adv. 2011;29(3):272-7. [DOI:10.1016/j.biotechadv.2011.01.001]
39. Akalın AS. Dairy-derived antimicrobial peptides: Action mechanisms, pharmaceutical uses and production proposals. Trends Food Sci. Technol. 2014;36(2):79-95. [DOI:10.1016/j.tifs.2014.01.002]
40. Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M. BIOPEP database and other programs for processing bioactive peptide sequences. J. AOAC Int. 2008;91(4):965-80. [DOI:10.1093/jaoac/91.4.965]
41. Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S. CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res. 2009;38(suppl_1):D774-D80. [DOI:10.1093/nar/gkp1021]
42. Keil B. Proteolysis Data Bank: specificity of alpha-chymotrypsin from computation of protein cleavages. Protein Sequences Data Anal. 1987;1(1):13-20.
43. Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res . 2008;37(suppl_1):D933-D7. [DOI:10.1093/nar/gkn823]
44. Yang S, Huang H, Wang F, Aweya JJ, Zheng Z, Zhang Y. Prediction and characterization of a novel hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei. Amino acids. 2018;50(8):995-1005. [DOI:10.1007/s00726-018-2575-x]
45. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65(1-2):55-63. [DOI:10.1016/0022-1759(83)90303-4]
46. Frija LM, Ntungwe E, Sitarek P, Andrade JM, Toma M, Śliwiński T, et al. In Vitro Assessment of Antimicrobial, Antioxidant, and Cytotoxic Properties of Saccharin-Tetrazolyl and-Thiadiazolyl Derivatives: The Simple Dependence of the pH Value on Antimicrobial Activity. Pharmaceuticals. 2019;12(4):167. [DOI:10.3390/ph12040167]
47. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6(2):71-9. [DOI:10.1016/j.jpha.2015.11.005]
48. Ciccaglione AF, Di Giulio M, Di Lodovico S, Di Campli E, Cellini L, Marzio L. Bovine lactoferrin enhances the efficacy of levofloxacin-based triple therapy as first-line treatment of Helicobacter pylori infection: an in vitro and in vivo study. J. Antimicrob. Chemother. 2019;74(4):1069-77. [DOI:10.1093/jac/dky510]
49. Nathan P, Law EJ, Murphy DF, MacMillan BG. A laboratory method for selection of topical antimicrobial agents to treat infected burn wounds. Burns. 1978;4(3):177-87. [DOI:10.1016/S0305-4179(78)80006-0]
50. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook: Springer; 2005. p. 571-607. [DOI:10.1385/1-59259-890-0:571]
51. Zasloff M. Antimicrobial peptides of multicellular organisms. nature. 2002;415(6870):389. [DOI:10.1038/415389a]
52. Hancock RE, Sahl H-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006;24(12):1551. [DOI:10.1038/nbt1267]
53. Wang G. Antimicrobial peptides: discovery, design and novel therapeutic strategies: Cabi; 2017. [DOI:10.1079/9781786390394.0000]
54. Shai Y. Mode of action of membrane active antimicrobial peptides. Peptide Science: Original Research on Biomolecules. 2002;66(4):236-48. [DOI:10.1002/bip.10260]
55. Zhang L, Rozek A, Hancock RE. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 2001;276(38):35714-22. [DOI:10.1074/jbc.M104925200]
56. Jenssen H, Hamill P, Hancock RE. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006;19(3):491-511. [DOI:10.1128/CMR.00056-05]
57. Wang G, Mishra B. The importance of amino acid composition in natural AMPs: an evolutional, structural, and functional perspective. Front. Immunol. 2012;3:221. [DOI:10.3389/fimmu.2012.00221]
58. Conneely OM. Antiinflammatory activities of lactoferrin. J. Am. Coll. Nutr. 2001;20(sup5):389S-95S. [DOI:10.1080/07315724.2001.10719173]
59. Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 1991;51(11):3062-6.
60. Orsi N. The antimicrobial activity of lactoferrin: current status and perspectives. Biometals. 2004;17(3):189-96. [DOI:10.1023/B:BIOM.0000027691.86757.e2]
61. Wang J, Liu H, Zhao J, Gao H, Zhou L, Liu Z, et al. Antimicrobial and antioxidant activities of the root bark essential oil of Periploca sepium and its main component 2-hydroxy-4-methoxybenzaldehyde. Molecules. 2010;15(8):5807-17. [DOI:10.3390/molecules15085807]
62. Jahani S, Shakiba A, Jahani L. The Antimicrobial effect of lactoferrin on Gram-negative and Gram-positive bacteria. Int. J. Infect. 2015;2(3). [DOI:10.17795/iji27594]
63. Drago-Serrano ME, De La Garza-Amaya M, Luna JS, Campos-Rodríguez R. Lactoferrin-lipopolysaccharide (LPS) binding as key to antibacterial and antiendotoxic effects. Int. Immunopharmacol. 2012;12(1):1-9. [DOI:10.1016/j.intimp.2011.11.002]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc