year 14, Issue 5 (September - October 2020)                   Iran J Med Microbiol 2020, 14(5): 460-477 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Babaie M, Ghaem panah A, Mehrabi Z, Mollaei A. Partial Purification and Characterization of Antimicrobial Effects from Snake (Echis carinatus), Scorpion (Mesosobuthus epues) and Bee (Apis mellifera) venoms. Iran J Med Microbiol. 2020; 14 (5) :460-477
1- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran ,
2- Reference Laboratory of Bovine Tuberculosis, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Tehran, Iran.
3- Department of Biology, Faculty of sciences, Karaj Branch, Islamic Azad University, Karaj, Iran.
4- Department of Veterinary Aerobic Bacterial Vaccines, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
Abstract:   (2201 Views)
   Background:  Some venoms and their isolated compounds have been shown to have antibacterial properties. Snake, scorpion and bee venoms are a complex mixture of proteins such as phospholipase and melittin, which have an effect on bacterial growth inhibition. This study aimed to investigate of antibacterial effect of three different venoms against selected bacterial strains.
 Materials & Methods:   Crude venoms obtained from snake (Echis carinatus), scorpion (Mesosobuthus epues) and bee (Apis mellifera) were selected. The crude venoms from these species was purified by using gel filtration chromatography and the molecular weights of the compounds in these venoms estimated by using SDS-PAGE. The approximate lethal dose values of venoms were determined. Antibacterial activity of venoms against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli were evaluated. Venoms and its isolated fractions and standard antibiotic were tested by using the disc diffusion method.
Results:   E. carinatus crude venom and fraction 2 were effective against S. aureus and E. coli.  M. eupeus crude venom and fraction 1 and 4 were effective against B. subtilis. A. mellifera crude venom demonstrated antibacterial activity against E. coli, S. aureus and Fraction 3 of this venom has an inhibition effect for E. coli and S. aureus.
Conclusion:   Snake, scorpion and bee venoms inhibit the growth and survival of bacterial strains and that these venoms can be used as a complementary antimicrobial agent against pathogenic bacteria.
Full-Text [PDF 1016 kb]   (620 Downloads) |   |   Full-Text (HTML)  (765 Views)  
Type of Study: Original | Subject: Antimicrobial Substances
Received: 2020/01/20 | Accepted: 2020/08/18 | ePublished: 2020/10/5

1. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645-58. [DOI:10.2147/IDR.S173867] [PMID] [PMCID]
2. Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309-18. [DOI:10.1179/2047773215Y.0000000030] [PMID] [PMCID]
3. Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem. 2014;6:25-64. [DOI:10.4137/PMC.S14459] [PMID] [PMCID]
4. Perumal Samy R, Stiles BG, Franco OL, Sethi G, Lim LHK. Animal venoms as antimicrobial agents. Biochem Pharmacol. 2017;134:127-38. [DOI:10.1016/j.bcp.2017.03.005] [PMID]
5. Babaie M, Zolfagharian H, Salmanizadeh H, Mirakabadi AZ, Alizadeh H. Isolation and partial purification of anticoagulant fractions from the venom of the Iranian snake Echis carinatus. Acta Biochim Pol. 2013;60(1):17-20. [DOI:10.18388/abp.2013_1945] [PMID]
6. Babaie M, Zolfagharian H, Zolfaghari M, Jamili S. Biochemical, hematological effects and complications of Pseudosynanceia Melanostigma Envenoming. J Pharmacopuncture. 2019;22(3):140-6.
7. Babaie M, Salmanizadeh H, Zolfagharian H, Alizadeh H. Properties of biological and biochemical effects of the Iranian saw-scaled viper (Echis carinatus) venom. Bratisl Lek Listy. 2014;115(7):434-8. [DOI:10.4149/BLL_2014_085] [PMID]
8. Babaie M, Salmanizadeh H, Zolfagharian H. Blood coagulation induced by Iranian saw-scaled viper (Echis Carinatus) venom: Identification, purification and characterization of a prothrombin activator. Iran J Basic Med Sci. 2013;16(11):1145-50.
9. Salmanizadeh H, Babaie M, Zolfagharian H. In vivo evaluation of homeostatic effects of Echis carinatus snake venom in Iran. J Venom Anim Toxins incl Trop Dis. 2013;19(3):21-9. [DOI:10.1186/1678-9199-19-3] [PMID] [PMCID]
10. Babaie M, Ghaempanah A. Evaluation of hemolytic activity and biochemical properties of Apis mellifera bee venom on NIH laboratory mice. J Neyshabur Univ Med Sci. 2020; 8(3):25-34.
11. Babaie M. Snakes venom proteins and coagulopathy caused by snakebite. J Birjand Univ Med Sci. 2020;27(3):1-11.
12. Yacoub T, Rima M, Karam M, Sabatier JM, Fajloun Z. Antimicrobials from venomous animals: An overview. Molecules. 2020;25(2402):1-19. [DOI:10.3390/molecules25102402] [PMID] [PMCID]
13. Almeida JR, Palacios ALV, Patiño RSP, Mendes B, Teixeira CAS, Gomes P3, et al. Harnessing snake venom phospholipases A2 to novel approaches for overcoming antibiotic resistance. Drug Dev Res. 2019;80(1):68-85. [DOI:10.1002/ddr.21456] [PMID]
14. Liu G, Yang F, Li F, Li Z, Lang Y, Shen B, et al. Therapeutic potential of a scorpion venom-derived antimicrobial peptide and its homologs against antibiotic-resistant gram-positive bacteria. Front Microbiol. 2018;9:1-14. [DOI:10.3389/fmicb.2018.01159] [PMID] [PMCID]
15. Malanovic N, Lohner K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals (Basel). 2016;9(3):1-33. [DOI:10.3390/ph9030059] [PMID] [PMCID]
16. Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics. 2020;9(24):1-20. [DOI:10.3390/antibiotics9010024] [PMID] [PMCID]
17. Bahar AA, Ren D. Antimicrobial peptides. Pharmaceuticals (Basel). 2013;6(12):1543-75. [DOI:10.3390/ph6121543] [PMID] [PMCID]
18. Jenssen H, Hamill P, Hancock REW. Peptide antimicrobial agents. Clin Microbiol Rev. 2006;19(3):491-511. [DOI:10.1128/CMR.00056-05] [PMID] [PMCID]
19. Zolfagharian H, Mohajeri M, Babaie M. Bee venom (Apis Mellifera) an effective potential alternative to gentamicin for specific bacteria strains. J Pharmacopuncture. 2016;19(3): 225-30. [DOI:10.3831/KPI.2016.19.023] [PMID] [PMCID]
20. Chen Na, Xu S, Zhang Y, Wang F. Animal protein toxins: origins and therapeutic applications. Biophys Rep. 2018;4(5):233-42. [DOI:10.1007/s41048-018-0067-x] [PMID] [PMCID]
21. Maehre HK, Dalheim L, Edvinsen GK, Elvevoll EO, Jensen IJ. Protein determination-method matters. Foods. 2018;7(1):1-11. [DOI:10.3390/foods7010005] [PMID] [PMCID]
22. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680-5. [DOI:10.1038/227680a0] [PMID]
23. Zolfagharian H, Mohajeri M, Babaie M. Honey bee venom (Apis mellifera) contains anticoagulation factors and increases the blood-clotting time. J Pharmacopuncture. 2015; 18(4):7-11. [DOI:10.3831/KPI.2015.18.031] [PMID] [PMCID]
24. Ahmed U, Mujaddad-ur-Rehman M, Khalid N, Fawad SA, Fatima A. Antibacterial activity of the venom of Heterometrus xanthopus. Indian J Pharmacol. 2012;44(4):509-11. [DOI:10.4103/0253-7613.99332] [PMID] [PMCID]
25. Munawar A, Ali SA, Akrem A, Betzel C. Snake venom peptides: Tools of biodiscovery. Toxins (Basel). 2018;10(11):1-29. [DOI:10.3390/toxins10110474] [PMID] [PMCID]
26. Perumal Samy R, Gopalakrishnakone P, Thwin MM, Chow TK, Bow H, Yap EH, Thong TW. Antibacterial activity of snake, scorpion and bee venoms: a comparison with purified venom phospholipase A2 enzymes. J Appl Microbiol. 2007;102(3):650-9. [DOI:10.1111/j.1365-2672.2006.03161.x] [PMID]
27. Talebimehrdar M, Madani R, Hajihosseini R, Moradi bidhendi M. Antibacterial activity of isolated immunodominant proteins of Naja Naja (Oxiana) Venom. Iran J Pharm Res. 2017;16(1):297-305.
28. Al-Asmari AK, Abbasmanthiri R, Abdo Osman NM, Siddiqui Y, Al-Bannah FA, Al-Rawi AM, et al. Assessment of the antimicrobial activity of few Saudi Arabian snake venoms. Open Microbiol J. 2015;9:18-25. [DOI:10.2174/1874285801509010018] [PMID] [PMCID]
29. Zhao Z, Ma Y, Dai C, Zhao R, Li S, Wu Y, Cao Z, et al. Imcroporin, a new cationic antimicrobial peptide from the venom of the scorpion Isometrus maculates. Antimicrob Agents Chemother. 2009;53(8):3472-7. [DOI:10.1128/AAC.01436-08] [PMID] [PMCID]
30. Benli M, Yigit N. Antibacterial activity of venom from funnel web spider Agelena labyrinthica (Araneae agelenidae). J Venom Anim Toxin Incl Trop Dis. 2008;14:641-50. [DOI:10.1590/S1678-91992008000400007]
31. Ahmed U, Mujaddad-ur-Rehman M, Khalid N, Fawad SA, Fatima A. Antibacterial activity of the venom of Heterometrus xanthopus. Indian J Pharmacol. 2012;44(4):509-11. [DOI:10.4103/0253-7613.99332] [PMID] [PMCID]
32. Ciscotto P, Machado de Avila RA, Coelho EA, Oliveria J, Diniz C, Farias L, Carvalho M, et al. Antigenic, microbicidal and antipareasitic properties of an L-amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon. 2009;53:330-41. [DOI:10.1016/j.toxicon.2008.12.004] [PMID]
33. Jami al ahmadi A, Fathi B, Jamshidi A, Zolfagharian H, Zare Mirakabbadi A. Investigation of the antibacterial effect of venom of the Iranian snake Echis carinatus. Iranian J Vet Sci Technol. 2010;2(2):93-100.

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc