year 18, Issue 4 (July - August 2024)                   Iran J Med Microbiol 2024, 18(4): 214-222 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farshchi Tabrizi A, Rafati Zomorodi A, Kakian F, Moazemy A, Kasraian L, Nakhaeitazeji S et al . Prevalence of Chlorhexidine-Tolerant Pseudomonas aeruginosa and Correlation with Antibiotic Resistance. Iran J Med Microbiol 2024; 18 (4) :214-222
URL: http://ijmm.ir/article-1-2413-en.html
1- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
2- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran & Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
3- Department of Bacteriology and Virology, Larestan University of Medical Sciences, Larestan, Iran
4- Blood Transfusion Research Center, Higher Institute for Research and Education in Transfusion Medicine, Shiraz, Iran
5- Department of Bacteriology and Virology, Shiraz Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
6- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran , motamedm@sums.ac.ir
Abstract:   (708 Views)

Background and Aim: Following genetic defects in cystic fibrosis (CF), mucus accumulation and hypoxic gradients develop in the lungs creating conditions for the anaerobic bacterial colonization. This study investigated the difference between the prevalence of some anaerobic bacteria and antibiotic resistance among healthy and CF groups.
Materials and Methods: In this case-control study, total RNA was extracted from blood samples of 40 GC patients with 29 H. pylori positive samples, and 40 healthy controls with 25 H. pylori positive individuals. The quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the expression levels of hsa-mir-196 and hsa-mir-153.
Results: Statistical analysis revealed a significant upregulation of hsa-mir-196 and a significant downregulation of hsa-mir-153 in the GC patients with H. pylori infection compared to those without infection and healthy controls.
Conclusion: In-silico analysis demonstrated the association of hsa-mir-196 and hsa-mir-153 with GC. These miRNAs are potential biomarkers for the GC associated with H. pylori infection and can serve as diagnostic tools for the early detection and may have prognostic value in predicting disease progression. However, further validation in larger cohorts and functional studies are necessary to fully understand their role in the GC development and assess their potential as therapeutic targets.

Full-Text [PDF 614 kb]   (253 Downloads) |   |   Full-Text (HTML)  (110 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2024/06/27 | Accepted: 2024/09/12 | ePublished: 2024/09/29

References
1. Glossary Disinfection and Sterilization Guidelines Library Infection Control CDC. Accessed on 01 October 2024. Available online: [https://www.cdc.gov/infection-control/hcp/disinfection-and-sterilization/index.html]
2. Betchen M, Giovinco HM, Curry M, Luu J, Fraimow H, Carabetta VJ, et al. Evaluating the effectiveness of hospital antiseptics on multidrug-resistant Acinetobacter baumannii: Understanding the relationship between microbicide and antibiotic resistance. Antibiotics. 2022;11(5):614. [DOI:10.3390/antibiotics11050614]
3. Namaki M, Habibzadeh S, Vaez H, Arzanlou M, Safarirad S, Bazghandi SA, et al. Prevalence of resistance genes to biocides in antibiotic-resistant Pseudomonas aeruginosa clinical isolates. Mol Biol Rep. 2022;49(3):2149-55. [DOI:10.1007/s11033-021-07032-2]
4. Zheng X, Zhang X, Zhou B, Liu S, Chen W, Chen L, et al. Clinical characteristics, tolerance mechanisms, and molecular epidemiology of reduced susceptibility to chlorhexidine among Pseudomonas aeruginosa isolated from a teaching hospital in China. Int J Antimicrob Agents. 2022;60(1):106605. [DOI:10.1016/j.ijantimicag.2022.106605]
5. Bock LJ, Wand ME, Sutton JM. Varying activity of chlorhexidine-based disinfectants against Klebsiella pneumoniae clinical isolates and adapted strains. J Hosp Infect. 2016;93(1):42-8. [DOI:10.1016/j.jhin.2015.12.019]
6. Rania K, Mohamed M, Waheed H, Nader N. Efflux pump genes and chlorhexidine resistance: Clue for Klebsiella pneumoniae infections in intensive care units, Egypt. Afr J Microbiol Res. 2014;8(21):2162-7. [DOI:10.5897/AJMR2014.6656]
7. Leshem T, Gilron S, Azrad M, Peretz A. Characterization of reduced susceptibility to chlorhexidine among Gram-negative bacteria. Microbes Infect. 2022;24(2):104891. [DOI:10.1016/j.micinf.2021.104891]
8. Gall E, Long A, Hall KK. Chlorhexidine bathing strategies for multidrug-resistant organisms: a summary of recent evidence. Journal of Patient Safety. 2020;16(3):S16-S22. [DOI:10.1097/PTS.0000000000000743]
9. Williamson DA, Carter GP, Howden BP. Current and emerging topical antibacterials and antiseptics: agents, action, and resistance patterns. Clin Microbiol Rev. 2017;30(3):827-60. [DOI:10.1128/CMR.00112-16]
10. Ahmadi N, Salimizand H, Zomorodi AR, Abbas JE, Ramazanzadeh R, Haghi F, et al. Genomic diversity of β-lactamase producing Pseudomonas aeruginosa in Iran; the impact of global high-risk clones. Ann Clin Microbiol Antimicrob. 2024;23(1):1-8. [DOI:10.1186/s12941-024-00668-5]
11. Reynolds D, Kollef M. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs. 2021;81(18):2117-31. [DOI:10.1007/s40265-021-01635-6]
12. Vincent JL, Sakr Y, Singer M, Martin-Loeches I, Machado FR, Marshall JC, et al. Prevalence and outcomes of infection among patients in intensive care units in 2017. JAMA. 2020;323(15):1478-87. [DOI:10.1001/jama.2020.2717]
13. Botelho J, Grosso F, Peixe L. Antibiotic resistance in Pseudomonas aeruginosa–Mechanisms, epidemiology and evolution. Drug Resist Updates. 2019;44:100640. [DOI:10.1016/j.drup.2019.07.002]
14. Simanek KA, Paczkowski JE. Resistance is not futile: the role of quorum sensing plasticity in Pseudomonas aeruginosa infections and its link to intrinsic mechanisms of antibiotic resistance. Microorganisms. 2022;10(6):1247. [DOI:10.3390/microorganisms10061247]
15. Hemati S, Kouhsari E, Sadeghifard N, Maleki A, Omidi N, Mahdavi Z, Pakzad I. Sub-minimum inhibitory concentrations of biocides induced biofilm formation in Pseudomonas aeruginosa. New Microbes New Infect. 2020;38:100794. [DOI:10.1016/j.nmni.2020.100794]
16. El-Banna T, Abd El-Aziz A, Sonbol F, El-Ekhnawy E. Adaptation of Pseudomonas aeruginosa clinical isolates to benzalkonium chloride retards its growth and enhances biofilm production. Mol Biol Rep. 2019;46:3437-43. [DOI:10.1007/s11033-019-04806-7]
17. Zomorodi AR, Mohseni N, Hafiz M, Nikoueian H, Hashemitabar G, Salimizand H, et al. Investigation of mobile colistin resistance (mcr) genes among carbapenem resistance Pseudomonas aeruginosa isolates from bovine mastitis in Mashhad, Iran. Gene Rep. 2022;29:101695. [DOI:10.1016/j.genrep.2022.101695]
18. Wayne PA. CLSI Performance Standards for Antimicrobial Susceptibility Testing. CLSI Document Clinical Laboratory Standards Institute (CLSI): Wayne, PA, USA. 2017.
19. Tag ElDein MA, Yassin AS, El-Tayeb O, Kashef MT. Chlorhexidine leads to the evolution of antibiotic-resistant Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2021;40(11):2349-61. [DOI:10.1007/s10096-021-04292-5]
20. Gomaa FA, Helal ZH, Khan MI. High prevalence of Bla NDM-1, Bla VIM, qacE, and qacEΔ1 genes and their association with decreased susceptibility to antibiotics and common hospital biocides in clinical isolates of Acinetobacter baumannii. Microorganisms. 2017;5(2):18. [DOI:10.3390/microorganisms5020018]
21. Kampf G. Acquired resistance to chlorhexidine–is it time to establish an ‘antiseptic stewardship’ initiative?. J Hosp Infect. 2016;94(3):213-27. [DOI:10.1016/j.jhin.2016.08.018]
22. Nakahara H, Kozukue H. Isolation of chlorhexidine-resistant Pseudomonas aeruginosa from clinical lesions. J Clin Microbiol. 1982;15(1):166-8. [DOI:10.1128/jcm.15.1.166-168.1982]
23. Rafati Zomorodi A, Rad M, Hashemitabar GR, Salimizand H. Molecular typing of cephalosporin resistant serovars of Salmonella enterica from poultry and farm animals. Bulg J Vet Med. 2020;23(2):178-86. [DOI:10.15547/bjvm.2196]
24. Ghadaksaz A, Fooladi AA, Hosseini HM, Amin M. The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J Appl Biomed. 2015;13(1):61-8. [DOI:10.1016/j.jab.2014.05.002]
25. Bazghandi SA, Arzanlou M, Peeridogaheh H, Vaez H, Sahebkar A, Khademi F. Prevalence of virulence genes and drug resistance profiles of Pseudomonas aeruginosa isolated from clinical specimens. Jundishapur J Microbiol. 2021;14(8):e118452 [DOI:10.5812/jjm.118452]
26. Heidari R, Farajzadeh Sheikh A, Hashemzadeh M, Farshadzadeh Z, Salmanzadeh S, Saki M. Antibiotic resistance, biofilm production ability and genetic diversity of carbapenem-resistant Pseudomonas aeruginosa strains isolated from nosocomial infections in southwestern Iran. Mol Biol Rep. 2022;49(5):3811-22. [DOI:10.1007/s11033-022-07225-3]
27. Ugwuanyi FC, Ajayi A, Ojo DA, Adeleye AI, Smith SI. Evaluation of efflux pump activity and biofilm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in Nigeria. Ann Clin Microbiol Antimicrob. 2021;20:1-7. [DOI:10.1186/s12941-021-00417-y]
28. Saleem S, Bokhari H. Resistance profile of genetically distinct clinical Pseudomonas aeruginosa isolates from public hospitals in central Pakistan. J Infect Public Health. 2020;13(4):598-605. [DOI:10.1016/j.jiph.2019.08.019]
29. Sid Ahmed MA, Abdel Hadi H, Abu Jarir S, Al Khal AL, Al-Maslamani MA, Jass J, et al. Impact of an antimicrobial stewardship programme on antimicrobial utilization and the prevalence of MDR Pseudomonas aeruginosa in an acute care hospital in Qatar. JAC-Antimicrob Resist. 2020;2(3):dlaa050. [DOI:10.1093/jacamr/dlaa050]
30. Hassuna NA, Darwish MK, Sayed M, Ibrahem RA. Molecular epidemiology and mechanisms of high-level resistance to meropenem and imipenem in Pseudomonas aeruginosa. Infect Drug Resist. 2020:285-93. [DOI:10.2147/IDR.S233808]
31. Feng W, Huang Q, Wang Y, Yuan Q, Li X, Xia P, et al. Changes in the resistance and epidemiological characteristics of Pseudomonas aeruginosa during a ten-year period. J Microbiol Immunol Infect. 2021;54(2):261-6. [DOI:10.1016/j.jmii.2019.08.017]
32. Cabrera R, Fernández-Barat L, Vázquez N, Alcaraz-Serrano V, Bueno-Freire L, Amaro R, et al. Resistance mechanisms and molecular epidemiology of Pseudomonas aeruginosa strains from patients with bronchiectasis. J Antimicrob Chemother. 2022;77(6):1600-10. [DOI:10.1093/jac/dkac084]
33. Losito AR, Raffaelli F, Del Giacomo P, Tumbarello M. New drugs for the treatment of Pseudomonas aeruginosa infections with limited treatment options: a narrative review. Antibiotics. 2022;11(5):579. [DOI:10.3390/antibiotics11050579]
34. Ferreiro JL, Otero JÁ, Rivo AS, González LG, Conde IR, Soneira MF, et al. Outpatient therapy with piperacillin/tazobactam using elastomeric pumps in patients with Pseudomonas aeruginosa infection. Sci Rep. 2021;11(1):8610. [DOI:10.1038/s41598-021-88179-7]
35. Buxser S. Has resistance to chlorhexidine increased among clinically-relevant bacteria? A systematic review of time course and subpopulation data. PLoS One. 2021;16(8):e0256336. [DOI:10.1371/journal.pone.0256336]
36. Huang SS. Chlorhexidine-based decolonization to reduce healthcare-associated infections and multidrug-resistant organisms (MDROs): who, what, where, when, and why?. J Hosp Infect. 2019;103(3):235-43. [DOI:10.1016/j.jhin.2019.08.025]
37. Huang SS, Septimus E, Kleinman K, Moody J, Hickok J, Heim L, et al. Chlorhexidine versus routine bathing to prevent multidrug-resistant organisms and all-cause bloodstream infections in general medical and surgical units (ABATE Infection trial): a cluster-randomised trial. The Lancet. 2019;393(10177):1205-15. [DOI:10.1016/S0140-6736(18)32593-5]
38. Ma LZ, Wang D, Liu Y, Zhang Z, Wozniak DJ. Regulation of biofilm exopolysaccharide biosynthesis and degradation in Pseudomonas aeruginosa. Annu Rev Microbiol. 2022;76(1):413-33. [DOI:10.1146/annurev-micro-041320-111355]
39. Farhan RE, Solyman SM, Hanora AM, Azab MM. Molecular detection of different virulence factors genes harbor pslA, pelA, exoS, toxA and algD among biofilm-forming clinical isolates of Pseudomonas aeruginosa. Mol Cell Biol. 2023;69(5):32-9. [DOI:10.14715/cmb/2023.69.5.6]
40. Motevasel M, Haghkhah M, Azimzadeh N. Phylogenetic Aspects of Antibiotic Resistance and Biofilm Formation of P. aeruginosa Isolated from Clinical Samples. Can J Infect Dis Med Microbiol. 2024;2024(1):6213873. [DOI:10.1155/2024/6213873]
41. Elmaraghy N, Abbadi S, Elhadidi G, Hashem A, Yousef A. Virulence genes in Pseudomonas aeruginosa strains isolated at Suez Canal University Hospitals with respect to the site of infection and antimicrobial resistance. Int J Clin Microbiol Biochem Technol. 2019;2(1):008-19. [DOI:10.29328/journal.ijcmbt.1001006]
42. Bakht M, Alizadeh SA, Rahimi S, Kazemzadeh Anari R, Rostamani M, Javadi A, et al. Phenotype and genetic determination of resistance to common disinfectants among biofilm-producing and non-producing Pseudomonas aeruginosa strains from clinical specimens in Iran. BMC Microbiol. 2022;22(1):124. [DOI:10.1186/s12866-022-02524-y]
43. Chowdhury CS, Khan JA, Khanam J, Nila SS, Ahmed S, Haque N, et al. Detection of Biocide Resistance Genes (qacE and qacΔE1) in Pseudomonas spp Isolated from Patients with CSOM at Mymensingh Medical College Hospital, Bangladesh. Mymensingh Med J. 2021;30(4):954-9.
44. Hashemi MM, Holden BS, Coburn J, Taylor MF, Weber S, Hilton B, et al. Proteomic analysis of resistance of Gram-negative bacteria to chlorhexidine and impacts on susceptibility to colistin, antimicrobial peptides, and ceragenins. Front Microbiol. 2019;10:210. [DOI:10.3389/fmicb.2019.00210]
45. Garcia RC, Rodrigues RD, Garcia EC, Rigatto MH. Comparison between Colistin and Polymyxin B in the Treatment of Bloodstream Infections Caused by Carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii-calcoaceticus Complex. Antibiotics. 2023;12(8):1317. [DOI:10.3390/antibiotics12081317]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc