سال 18، شماره 6 - ( آذر - دی 1403 )                   جلد 18 شماره 6 صفحات 387-374 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

SalahEldin M A, Ibrahim E M, Mohamed S G G, AbduRahim S A, Hassan H G, Mohamed A E A, et al . In Vitro Synergistic Antibacterial Potential of Two Binary Combinations of Six Essential Oils Against Helicobacter Pylori Isolates. Iran J Med Microbiol 2024; 18 (6) :374-387
URL: http://ijmm.ir/article-1-2312-fa.html
صلاح الدین مریم الف، ابراهیم الامین محمد، محمد ساره جمال جوبارا، عبدالرحیم سما اواد، حسن عادل قاسم، محمد علی الباقر علی، و همکاران. و همکاران. و همکاران.. پتانسیل ضد باکتریایی سینرژیستیک دو ترکیب دوتایی از شش اسانس در برابر ایزوله های هلیکوباکتر پیلوری. مجله میکروب شناسی پزشکی ایران. 1403; 18 (6) :374-387

URL: http://ijmm.ir/article-1-2312-fa.html


1- گروه میکروب شناسی پزشکی، دانشگاه خارطوم، خارطوم، سودان ، maryam.atif.se@gmail.com
2- گروه میکروب شناسی پزشکی، دانشگاه خارطوم، خارطوم، سودان
3- گروه آزمایشگاه پزشکی، بیمارستان جاده فرودگاه مدیکلینیک، ابوظبی، امارات متحده عربی
4- گروه میکروب شناسی، دانشکده پزشکی، کالج های الریان، المدینه المنوره، عربستان سعودی
5- گروه روانپزشکی، هیئت تخصصی پزشکی، خارطوم، سودان
6- گروه هماتولوژی پزشکی، دانشگاه علم و صنعت، اُم‌ دُرمان، سودان
7- گروه رادیولوژی، بیمارستان های داله، ریاض، عربستان سعودی
8- گروه میکروب شناسی، واحد پزشکی، آکادمی عالی مطالعات استراتژیک و امنیتی، خارطوم، سودان
9- گروه میکروب شناسی، پزشکی دقیق، آزمایشگاه بین المللی Sanimed و مدیریت، ابوظبی، امارات متحده عربی
10- گروه میکروب شناسی، گیاهان دارویی و معطر و موسسه تحقیقات طب سنتی، خارطوم، سودان
چکیده:   (260 مشاهده)
زمینه و هدف: عفونت هلیکوباکتر پیلوری (H. pylori) یکی از نگرانی‌های مهم بهداشتی است که در ایجاد بیماری‌های گوارشی نقش دارد. درمان مناسب برای کاهش شیوع این گونه عفونت ها به ویژه در کشورهای در حال توسعه عامل کلیدی است. با این حال، ظهور مقاومت ضد میکروبی به پروتکل‌های درمانی مرسوم، نیاز به شروع رویکردهای درمانی جایگزین را برجسته می‌کند. این مطالعه با هدف کشف ترکیبات جدید اسانس با فعالیت قوی در برابر هلیکوباکتر پیلوری ایزوله از بیماران سودانی انجام شد.
مواد و روش‌ها: سویه‌های هلیکوباکتر پیلوری با استفاده از آزمایش‌های بیوشیمیایی مرسوم جداسازی و شناسایی شدند. شناسایی ژنتیکی با استفاده از واکنش زنجیره‌ای پلیمراز (PCR) با هدف H. pylori ۱۶S RNA ریبوزومی (rRNA) ژن محل‌های اتصال اولیه تتراسایکلین انجام شد. سپس ژن تکثیر شده با استفاده از توالی یابی Sanger تعیین توالی و با استفاده از ابزارهای مختلف بیوانفورماتیک مورد تجزیه و تحلیل قرار گرفت. علاوه بر این، شش اسانس (Eos) برای فعالیت در شرایط آزمایشگاهی خود در برابر ایزوله‌های بالینی هلیکوباکتر پیلوری مورد بررسی قرار گرفت.
یافته‌ها: جدایه‌های هلیکوباکتر پیلوری از بیماران سودانی با تجزیه و تحلیل توالی‌های rRNA ۱۶S شناسایی شدند. همه اسانس‌های آزمایش‌شده رشد جدایه‌های بالینی هلیکوباکتر پیلوری را در غلظت ۱۲۵ میکروگرم بر میلی‌لیتر کاملاً مهار کردند. روغن‌های میخک و ماهارائب حداکثر فعالیت را نشان دادند و رشد همه سویه‌های مورد مطالعه را حتی در غلظت ۹/۳ میکروگرم بر میلی‌لیتر مهار کردند. علاوه بر این، مخلوط‌های دارچین-بادرنجبویه، دارچین-مهارائب، آویشن-مهارائب، کندر-مهارائب، و علف لیمو-مهارائب هم افزایی قوی در برابر سویه‌های آزمایش شده با شاخص‌های غلظت بازدارنده کسری (FIC) از ۰.۲ تا ۰.۲ نشان دادند.
نتیجه‌گیری: ترکیب‌های هم افزایی، درمان‌های جایگزین امیدوارکننده‌ای را نشان می‌دهند و نشان می‌دهند که این ظرفیت برای مطالعات بیشتر بیشتر و همچنین آزمایش‌های بالینی با هدف قرار دادن عفونت هلیکوباکتر پیلوری توصیه می‌شود.
متن کامل [PDF 911 kb]   (66 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: باکتری شناسی پزشکی
دریافت: 1403/5/28 | پذیرش: 1403/9/19 | انتشار الکترونیک: 1403/11/10

فهرست منابع
1. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984;1(8390):1311-5. [DOI:10.1016/S0140-6736(84)91816-6] [PMID]
2. Li Y, Choi H, Leung K, Jiang F, Graham DY, Leung WK. Global prevalence of Helicobacter pylori infection between 1980 and 2022: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2023;8(6):553-564. [DOI:10.1016/S2468-1253(23)00070-5] [PMID]
3. Ishikawa E, Nakamura M, Satou A, Shimada K, Nakamura S. Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma in the Gastrointestinal Tract in the Modern Era. Cancers (Basel). 2022;14(2):446. [DOI:10.3390/cancers14020446] [PMID] [PMCID]
4. Caso GC, McClain MS, Erwin AL, Truelock MD, Campbell AM, Leasure CS, et al. Functional Properties of Oligomeric and Monomeric Forms of Helicobacter pylori VacA Toxin. Infect Immun. 2021;89(12):e0034821. [DOI:10.1128/IAI.00348-21] [PMID] [PMCID]
5. Takahashi-Kanemitsu A, Knight CT, Hatakeyama M. Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol. 2020;17:50-63. [DOI:10.1038/s41423-019-0339-5] [PMID] [PMCID]
6. Azim Mirghani YA, Ahmed S, Ahmed M, Ismail MO, Fedail SS, Kamel M, et al. Detection of Helicobacter pylori in endoscopic biopsies in Sudan. Trop Doct. 1994;24(4):161-3. [DOI:10.1177/004947559402400407] [PMID]
7. Idris AB, Hassan HG, Ali MAS, Eltaher SM, Idris LB, Altayb HN, et al. Molecular Phylogenetic Analysis of 16S rRNA Sequences Identified Two Lineages of Helicobacter pylori Strains Detected from Different Regions in Sudan Suggestive of Differential Evolution. Int J Microbiol. 2020;2020:8825718. [DOI:10.1155/2020/8825718] [PMID] [PMCID]
8. Gupta A, Shetty S, Mutalik S, Chandrashekar H R, K N, Mathew EM, et al. Treatment of H. pylori infection and gastric ulcer: Need for novel Pharmaceutical formulation. Heliyon. 2023;9(10):e20406. [DOI:10.1016/j.heliyon.2023.e20406] [PMID] [PMCID]
9. Ohno T, Kita M, Yamaoka Y, Imamura S, Yamamoto T, Mitsufuji S, et al. Antimicrobial activity of essential oils against Helicobacter pylori. Helicobacter. 2003;8(3):207-15. [DOI:10.1046/j.1523-5378.2003.00146.x] [PMID]
10. Korona-Glowniak I, Glowniak-Lipa A, Ludwiczuk A, Baj T, Malm A. The In Vitro Activity of Essential Oils against Helicobacter Pylori Growth and Urease Activity. Molecules. 2020;25(3):586. [DOI:10.3390/molecules25030586] [PMID] [PMCID]
11. Bertea CM, Maffei ME. The genus Cymbopogon: botany including anatomy, physiology, biochemistry, and molecular biology. In: Akhila A, editor. Essential Oil-Bearing Grasses: The genus Cymbopogon. Boca Raton (US): CRC Press; 2010. pp.1-24.
12. Aous W, Benchabane O, Outaleb T, Hazzit M, Mouhouche F, Yekkour A, et al. Essential oils of Cymbopogon schoenanthus (L.) Spreng. from Algerian Sahara: chemical variability, antioxidant, antimicrobial and insecticidal properties. J Essent Oil Res. 2019;31(6):562-572. [DOI:10.1080/10412905.2019.1612790]
13. Malti CEW, El Haci IA, Hassani F, Paoli M, Gibernau M, Tomi F, et al. Composition, Chemical Variability and Biological Activity of Cymbopogon schoenanthus Essential Oil from Central Algeria. Chem Biodivers. 2020;17(6):e2000138. [DOI:10.1002/cbdv.202000138] [PMID]
14. Clayton WD. Gramineae. In: Flora of West Africa: Tropical Africa; 1968. Vol.3. pp. 349-512.
15. Sharma N, Sheikh ZN, Alamri S, Singh B, Kesawat MS, Guleria S. Chemical Composition, Antibacterial and Combinatorial Effects of the Essential Oils from Cymbopogon spp. and Mentha arvensis with Conventional Antibiotics. Agronomy. 2023;13(4):1091. [DOI:10.3390/agronomy13041091]
16. Bowles E. The chemistry of aromatherapeutic oils. 3rd ed. Australia: Allen and Unwin; 2003. pp. 25.
17. Batiha GE, Alkazmi LM, Wasef LG, Beshbishy AM, Nadwa EH, Rashwan EK. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules. 2020;10(2):202. [DOI:10.3390/biom10020202] [PMID] [PMCID]
18. Jung DH, Park MH, Kim CJ, Lee JY, Keum CY, Kim IS, et al. Effect of β-caryophyllene from Cloves Extract on Helicobacter pylori Eradication in Mouse Model. Nutrients. 2020;12(4):1000. [DOI:10.3390/nu12041000] [PMID] [PMCID]
19. Vollesen K, Hedberg I, Edwards S, editors. Burseraceae. In: Flora of Ethiopia. National Herbarium, Addis Ababa, Ethiopia; 1989. pp. 442-478.
20. Abdelsamad A, Ahmed K, Al-magboul A, Fadul E. Antimicrobial activity of essential oils and extracts of oleo-gum resins from boswellia papyrifera (tarak tarak) grown in some parts of the sudan. Arab J Med Aromat Plants. 2020;6(1):22-35.
21. Morales R. The history, botany and taxonomy of the genus Thymus. In: Stahl-Biskup E, Sáez F, editors. Thyme: The genus Thymus. London: Taylor & Francis; 2002. pp. 1-43.
22. Diniz AF, Santos B, Nóbrega LMMO, Santos VRL, Mariz WS, Cruz PSC, et al. Antibacterial activity of Thymus vulgaris (thyme) essential oil against strains of Pseudomonas aeruginosa, Klebsiella pneumoniae and Staphylococcus saprophyticus isolated from meat product. Braz J Biol. 2023;83:e275306. [DOI:10.1590/1519-6984.275306] [PMID]
23. Paranagama PA, Wimalasena S, Jayatilake GS, Jayawardena AL, Senanayake UM, Mubarak AM. A comparison of essential oil constituents of bark, leaf, root and fruit of cinnamon (Cinnamomum zeylanicum Blum) grown in Sri Lanka. J Natn Sci Foundation Sri Lanka. 2001;29:147-153. [DOI:10.4038/jnsfsr.v29i3-4.2613]
24. Pathak R, Sharma H. A review on medicinal uses of Cinnamomum verum (cinnamon). Journal of Drug Delivery and Therapeutics. 2021;11(6-S):161-6. [DOI:10.22270/jddt.v11i6-S.5145]
25. Sawadogo I, Paré A, Kaboré D, Montet D, Durand N, Bouajila J, et al. Antifungal and Antiaflatoxinogenic Effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus Essential Oils Alone and in Combination. J Fungi (Basel). 2022;8(2):117. [DOI:10.3390/jof8020117] [PMID] [PMCID]
26. de Rapper S, Van Vuuren SF, Kamatou GP, Viljoen AM, Dagne E. The additive and synergistic antimicrobial effects of select frankincense and myrrh oils--a combination from the pharaonic pharmacopoeia. Lett Appl Microbiol. 2012;54(4):352-8. [DOI:10.1111/j.1472-765X.2012.03216.x] [PMID]
27. Benameur Q, Gervasi T, Pellizzeri V, Pľuchtová M, Tali-Maama H, Assaous F, et al. Antibacterial activity of Thymus vulgaris essential oil alone and in combination with cefotaxime against blaESBL producing multidrug resistant Enterobacteriaceae isolates. Nat Prod Res. 2019;33(18):2647-54. [DOI:10.1080/14786419.2018.1466124] [PMID]
28. Iseppi R, Truzzi E, Sabia C, Messi P. Efficacy and Synergistic Potential of Cinnamon (Cinnamomum zeylanicum) and Clove (Syzygium aromaticum L. Merr. & Perry) Essential Oils to Control Food-Borne Pathogens in Fresh-Cut Fruits. Antibiotics (Basel). 2024;13(4):319. [DOI:10.3390/antibiotics13040319] [PMID] [PMCID]
29. Westblom TU, Madan E, Midkiff BR. Egg yolk emulsion agar, a new medium for the cultivation of Helicobacter pylori. J Clin Microbiol. 1991;29(4):819-21. [DOI:10.1128/jcm.29.4.819-821.1991] [PMID] [PMCID]
30. Gassoum A, Arbab MA, Aldeaf SAH, Elhassan LA, Elshibli E, Elhassan AM. Allele frequency of p53 gene arg72pro in sudanese meningioma patients and controls. Int J Sci Technol Res. 2014;3(6):243-8.
31. Seriki AT, Smith SI, Adeleye AI, Fowora MA. Molecular analysis of low-level tetracycline resistance in clinical isolates of Helicobacter pylori among dyspeptic patients in South West Nigeria. J Glob Antimicrob Resist. 2018;13:143-5. [DOI:10.1016/j.jgar.2018.01.003] [PMID]
32. Cowley TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95-8.
33. McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 2013;41:W597-W600. [DOI:10.1093/nar/gkt376] [PMID] [PMCID]
34. Clinical and Laboratory Standards Institute (CLSI). Protocols for evaluating dehydrated Mueller-Hinton agar; approved standard-second edition. CLSI document M06-A2. Wayne, PA: Clinical and Laboratory Standards Institute; 2006.
35. Clinical and Laboratory Standards Institute (CLSI). Method for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Eleventh Edition. CLSI document M07. Wayne, PA: Clinical and Laboratory Standards Institute; 2018.
36. Martinez-Irujo JJ, Villahermosa ML, Alberdi E, Santiago E. A checkerboard method to evaluate interactions between drugs. Biochem Pharmacol. 1996;51(5):635-44. [DOI:10.1016/S0006-2952(95)02230-9] [PMID]
37. Bassolé IH, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules. 2012;17(4):3989-4006. [DOI:10.3390/molecules17043989] [PMID] [PMCID]
38. Bergonzelli GE, Donnicola D, Porta N, Corthésy-Theulaz IE. Essential oils as components of a diet-based approach to management of Helicobacter infection. Antimicrob Agents Chemother. 2003;47(10):3240-6. [DOI:10.1128/AAC.47.10.3240-3246.2003] [PMID] [PMCID]
39. Francis A, Huber KT, Moulton V. Tree-Based Unrooted Phylogenetic Networks. Bull Math Biol. 2018;80(2):404-16. [DOI:10.1007/s11538-018-0530-3] [PMID] [PMCID]
40. Liu Q, Liu H, Shi L, Gan M, Zhao X, Lyu LD, et al. Local adaptation of Mycobacterium tuberculosis on the Tibetan Plateau. Proc Natl Acad Sci U S A. 2021;118(17):e2017831118. [DOI:10.1073/pnas.2017831118] [PMID] [PMCID]
41. Atherton JC, Blaser MJ. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest. 2009;119(9):2475-87. [DOI:10.1172/JCI38605] [PMID] [PMCID]
42. Partha R, Kowalczyk A, Clark NL, Chikina M. Robust Method for Detecting Convergent Shifts in Evolutionary Rates. Mol Biol Evol. 2019;36(8):1817-30. [DOI:10.1093/molbev/msz107] [PMID] [PMCID]
43. Chraibi M, Farah A, Elamin O, Iraqui HM, Fikri-Benbrahim K. Characterization, antioxidant, antimycobacterial, antimicrobial effcts of Moroccan rosemary essential oil, and its synergistic antimicrobial potential with carvacrol. J Adv Pharm Technol Res. 2020;11(1):25-9. [DOI:10.4103/japtr.JAPTR_74_19] [PMID] [PMCID]
44. Esmaeili D, Mobarez AM, Tohidpour A. Anti-helicobacter pylori activities of shoya powder and essential oils of thymus vulgaris and eucalyptus globulus. Open Microbiol J. 2012;6:65-9. [DOI:10.2174/1874285801206010065] [PMID] [PMCID]
45. Langeveld WT, Veldhuizen EJ, Burt SA. Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol. 2014;40(1):76-94. [DOI:10.3109/1040841X.2013.763219] [PMID]
46. Kumar M, Sikri N, Chahal S, Sharma J, Sharma B, Yadav P, et al. Urease Inhibitory Kinetic Studies of Various Extracts and Pure Compounds from Cinnamomum Genus. Molecules. 2021;26(13):3803. [DOI:10.3390/molecules26133803] [PMID] [PMCID]
47. Aygül A, Kibar F, Ciragil P. Quercetin and cinnamaldehyde show antipathogenic activity against Proteus mirabilis isolates: inhibition of swarming motility and urease activity. Flora J Infect Dis Clin Microbiol. 2020;25(1):76-83. [DOI:10.5578/flora.69001]
48. Basavegowda N, Baek KH. Synergistic Antioxidant and Antibacterial Advantages of Essential Oils for Food Packaging Applications. Biomolecules. 2021;11(9):1267. [DOI:10.3390/biom11091267] [PMID] [PMCID]
49. Qian W, Liu M, Fu Y, Wang T, Zhang J, Yang M, et al. Antimicrobial and Antibiofilm Activities of Citral Against Carbapenem-Resistant Enterobacter cloacae. Foodborne Pathog Dis. 2020;17(7):459-65. [DOI:10.1089/fpd.2019.2751] [PMID]
50. Swetha TK, Vikraman A, Nithya C, Hari Prasath N, Pandian SK. Synergistic antimicrobial combination of carvacrol and thymol impairs single and mixed-species biofilms of Candida albicans and Staphylococcus epidermidis. Biofouling. 2020;36(10):1256-71. [DOI:10.1080/08927014.2020.1869949] [PMID]
51. Jawad M, Bhatia S, Al-Harrasi A, Ullah S, Halim SA, Khan A, et al. Antimicrobial topical polymeric films loaded with Acetyl-11-keto-β-boswellic acid (AKBA), boswellic acid and silver nanoparticles: Optimization, characterization, and biological activity. Heliyon. 2024;10(13):e33351. [DOI:10.1016/j.heliyon.2024.e33351] [PMID] [PMCID]
52. Yagi S, Mohammed ABA, Tzanova T, Schohn H, Abdelgadir H, Stefanucci A, et al. Chemical profile, antiproliferative, antioxidant, and enzyme inhibition activities and docking studies of Cymbopogon schoenanthus (L.) Spreng. and Cymbopogon nervatus (Hochst.) Chiov. from Sudan. J Food Biochem. 2019;00:e13107. [DOI:10.1111/jfbc.13107] [PMID]
53. Abdolpour F, Shahverdi A, Rafii F, Fazeli M, Amini M. Effects of Piperitone on the Antimicrobial Activity of Nitrofurantoin and on Nitrofurantoin Metabolism by Enterobacter cloacae. Pharm Biol. 2007;45(3):230-4. [DOI:10.1080/13880200701213161]
54. Saïdana D, Mahjoub MA, Boussaada O, Chriaa J, Chéraif I, Daami M, et al. Chemical composition and antimicrobial activity of volatile compounds of Tamarix boveana (Tamaricaceae). Microbiol Res. 2008;163(4):445-55. [DOI:10.1016/j.micres.2006.07.009] [PMID]
55. Mangalagiri NP, Panditi SK, Jeevigunta NLL. Antimicrobial activity of essential plant oils and their major components. Heliyon. 2021;7(4):e06835. [DOI:10.1016/j.heliyon.2021.e06835] [PMID] [PMCID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله میکروب شناسی پزشکی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق   ناشر: موسسه فرنام

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb Publishr: Farname Inc.