سال 17، شماره 5 - ( مهر - آبان 1402 )                   جلد 17 شماره 5 صفحات 519-505 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jomehpour N, Soleimanpour S, Sankian M. Diagnosis of Latent Tuberculosis Infection: Promising Antigens. Iran J Med Microbiol 2023; 17 (5) :505-519
URL: http://ijmm.ir/article-1-2037-fa.html
جمعه پور نجمه، سلیمان پور سامان، سنکیان مجتبی. تشخیص عفونت سل نهفته: آنتی ژن های امیدوارکننده. مجله میکروب شناسی پزشکی ایران. 1402; 17 (5) :505-519

URL: http://ijmm.ir/article-1-2037-fa.html


1- گروه میکروب شناسی و ویروس شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران
2- گروه میکروب شناسی و ویروس شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران ، Soleimanpours@mums.ac.ir
3- مرکز تحقیقات ایمونولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی مشهد، مشهد، ایران
چکیده:   (904 مشاهده)

شیوع عفونت سل نهفته بر حسب منطقه به طور چشمگیری متفاوت است. در حال حاضر یک چهارم جمعیت جهان به سل نهفته مبتلا هستند. جهت رسیدن به اهداف سازمان بهداشت جهانی جهت پایان سل در سراسر جهان تا سال ۲۰۳۰ تعداد افراد مبتلا به سل نهفته که به سمت سل فعال پیشرفت می کنند باید کاهش یابد. تست های رایج که جهت تشخیص سل نهفته کاربرد دارد بر اساس پاسخ ایمنی به آنتی ژن های اختصاصی مایکوباکتریوم توبرکلوزیس به دو نوع تست های پوستی و تست های مبتنی بر اندازه گیری اینترفرون گاما تقسیم بندی می شوند. با این وجود هر دو تست دارای حساسیت پایینی هستند و نمی توانند بین سل نهفته و سل فعال تمایز قائل شوند. بنابراین، تکنیک‌های مختلفی مانند تشخیص سیتوکین های جایگزین و استفاده از آنتی ژن‌های جدید برای افزایش دقت این آزمایش‌ها در حال مطالعه هستند. علاوه بر این، آنتی ژن های جدید را می توان برای نظارت بر پیشرفت سل فعال و پاسخ به درمان استفاده کرد. هدف از این مطالعه بررسی ابزارهای تشخیصی و شواهد موجود در مورد آنتی ژن های جدید مایکوباکتریوم توبرکلوزیس برای تشخیص سل نهفته و انتخاب آنتی ژن های امیدوارکننده برای تحقیقات آینده است.

متن کامل [PDF 1089 kb]   (362 دریافت)    
نوع مطالعه: مقاله مروری | موضوع مقاله: باکتری شناسی پزشکی
دریافت: 1402/3/16 | پذیرش: 1402/6/18 | انتشار الکترونیک: 1402/9/8

فهرست منابع
1. Miggiano R, Rizzi M, Ferraris DM. Mycobacterium tuberculosis pathogenesis, infection prevention and treatment. 2020. p. 385. [DOI:10.3390/pathogens9050385] [PMID] [PMCID]
2. World Health O. Global tuberculosis report 2013: World Health Organization; 2013.
3. Mohammadzadeh R, Ghazvini K, Farsiani H, Soleimanpour S. Mycobacterium tuberculosis extracellular vesicles: exploitation for vaccine technology and diagnostic methods. Crit Rev Microbiol. 2021;47(1):13-33. [DOI:10.1080/1040841X.2020.1830749] [PMID]
4. Brandt L, Feino Cunha J, Weinreich Olsen A, Chilima B, Hirsch P, Appelberg R, et al. Failure of the Mycobacterium bovis BCG Vaccine: Some Species of Environmental Mycobacteria Block Multiplication of BCG and Induction of Protective Immunity to Tuberculosis. Infect Immun. 2002;70(2):672-8. [DOI:10.1128/IAI.70.2.672-678.2002] [PMID] [PMCID]
5. Adam C, Victor Dahl M, Thomas S, Christian W. The global prevalence of latent tuberculosis: a systematic review and meta-analysis. Eur Respir J. 2019;54(3):1900655. [DOI:10.1183/13993003.00655-2019] [PMID]
6. Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol. 2018;18(9):575-89. [DOI:10.1038/s41577-018-0025-3] [PMID] [PMCID]
7. Pai M, Behr M. Latent Mycobacterium tuberculosis Infection and Interferon-Gamma Release Assays. Microbiol Spectr. 2016;4(5). [DOI:10.1128/microbiolspec.TBTB2-0023-2016] [PMID]
8. Lalvani A, Pareek M. A 100 year update on diagnosis of tuberculosis infection. Br Med Bull. 2010;93(1):69-84. [DOI:10.1093/bmb/ldp039] [PMID]
9. Pai M, Nicol MP, Boehme CC. Tuberculosis Diagnostics: State of the Art and Future Directions. Tuberculosis and the Tubercle Bacillus2017. p. 361-78. [DOI:10.1128/9781555819569.ch16]
10. Karbalaei Zadeh Babaki M, Taghiabadi M, Soleimanpour S, Saleh Moghadam M, Mosavat A, Amini AA, et al. Mycobacterium tuberculosis Ag85b:hfcγ1 recombinant fusion protein as a selective receptor-dependent delivery system for antigen presentation. Microb Pathog. 2019;129:68-73. [DOI:10.1016/j.micpath.2019.01.045] [PMID]
11. Chugh T. Diagnosis of tuberculosis: New approaches. 2020. p. 1-2. [DOI:10.1016/j.cmrp.2020.01.002]
12. Berg RD, Levitte S, O'Sullivan MP, O'Leary SM, Cambier CJ, Cameron J, et al. Lysosomal disorders drive susceptibility to tuberculosis by compromising macrophage migration. Cell. 2016;165(1):139-52. [DOI:10.1016/j.cell.2016.02.034] [PMID] [PMCID]
13. Carranza C, Pedraza-Sanchez S, de Oyarzabal-Mendez E, Torres M. Diagnosis for latent tuberculosis infection: new alternatives. Front Immunol. 2020;11:2006. [DOI:10.3389/fimmu.2020.02006] [PMID] [PMCID]
14. Pathakumari B, Prabhavathi M, Anbarasu D, Paramanandhan P, Raja A. Dynamic IgG antibody response to immunodominant antigens of M. tuberculosis for active TB diagnosis in high endemic settings. Clin Chim Acta. 2016;461:25-33. [DOI:10.1016/j.cca.2016.06.033] [PMID]
15. Ma Z, Ji X, Yang H, He J, Zhang Q, Wang Y, et al. Screening and evaluation of Mycobacterium tuberculosis diagnostic antigens. Eur J Clin Microbiol Infect Dis. 2020;39(10):1959-70. [DOI:10.1007/s10096-020-03951-3] [PMID]
16. Coppola M, Ottenhoff THM. Genome wide approaches discover novel Mycobacterium tuberculosis antigens as correlates of infection, disease, immunity and targets for vaccination. Semin Immunol. 2018;39:88-101. [DOI:10.1016/j.smim.2018.07.001] [PMID]
17. Leyten Eliane MS, Arend Sandra M, Prins C, Cobelens Frank GJ, Ottenhoff Tom HM, van Dissel Jaap T. Discrepancy between Mycobacterium tuberculosis-Specific Gamma Interferon Release Assays Using Short and Prolonged In Vitro Incubation. Clin Vaccine Immunol. 2007;14(7):880-5. [DOI:10.1128/CVI.00132-07] [PMID] [PMCID]
18. Sun J, Champion PA, Bigi F. Cellular and molecular mechanisms of Mycobacterium tuberculosis virulence. Front Cell Infect Microbiol. 2019;9:331. [DOI:10.3389/fcimb.2019.00331] [PMID] [PMCID]
19. Lalvani A, Nagvenkar P, Udwadia Z, Pathan AA, Wilkinson KA, Shastri JS, et al. Enumeration of T cells specific for RD1-encoded antigens suggests a high prevalence of latent Mycobacterium tuberculosis infection in healthy urban Indians. J Infect Dis. 2001;183(3):469-77. [DOI:10.1086/318081] [PMID]
20. Ganguly N, Siddiqui I, Sharma P. Role of M. tuberculosis RD-1 region encoded secretory proteins in protective response and virulence. Tuberculosis. 2008;88(6):510-7. [DOI:10.1016/j.tube.2008.05.002] [PMID]
21. Liu X-Q, Dosanjh D, Varia H, Ewer K, Cockle P, Pasvol G, et al. Evaluation of T-Cell Responses to Novel RD1- and RD2-Encoded Mycobacterium tuberculosis Gene Products for Specific Detection of Human Tuberculosis Infection. Infect Immun. 2004;72(5):2574-81. [DOI:10.1128/IAI.72.5.2574-2581.2004] [PMID] [PMCID]
22. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol. 1996;178(5):1274-82. [DOI:10.1128/jb.178.5.1274-1282.1996] [PMID] [PMCID]
23. Coscolla M, Gagneux S. Consequences of genomic diversity in Mycobacterium tuberculosis. Semin Immunol. 2014;26(6):431-44. [DOI:10.1016/j.smim.2014.09.012] [PMID] [PMCID]
24. Mustafa AS, Al-Attiyah R. Identification of Mycobacterium tuberculosis-specific genomic regions encoding antigens inducing protective cellular immune responses. Indian J Exp Biol. 2009;47(06):498-504.
25. Ruhwald M, Aggerbeck H, Gallardo RV, Hoff ST, Villate JI, Borregaard B, et al. Safety and efficacy of the C-Tb skin test to diagnose Mycobacterium tuberculosis infection, compared with an interferon γ release assay and the tuberculin skin test: a phase 3, double-blind, randomised, controlled trial. Lancet Respir Med. 2017;5(4):259-68. [DOI:10.1016/S2213-2600(16)30436-2] [PMID]
26. Millington KA, Fortune SM, Low J, Garces A, Hingley-Wilson SM, Wickremasinghe M, et al. Rv3615c is a highly immunodominant RD1 (Region of Difference 1)-dependent secreted antigen specific for Mycobacterium tuberculosis infection. Proc Natl Acad Sci. 2011;108(14):5730-5. [DOI:10.1073/pnas.1015153108] [PMID] [PMCID]
27. Chegou NN, Black GF, Loxton AG, Stanley K, Essone PN, Klein MR, et al. Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting. BMC Infect Dis. 2012;12(1):10. [DOI:10.1186/1471-2334-12-10] [PMID] [PMCID]
28. Pourakbari B, Mamishi S, Benvari S, Mahmoudi S. Comparison of the QuantiFERON-TB Gold Plus and QuantiFERON-TB Gold In-Tube interferon-γ release assays: A systematic review and meta-analysis. Adv Med Sci. 2019;64(2):437-43. [DOI:10.1016/j.advms.2019.09.001] [PMID]
29. Welin A, Björnsdottir H, Winther M, Christenson K, Oprea T, Karlsson A, et al. CFP-10 from Mycobacterium tuberculosis Selectively Activates Human Neutrophils through a Pertussis Toxin-Sensitive Chemotactic Receptor. Infect Immun. 2014;83(1):205-13. [DOI:10.1128/IAI.02493-14] [PMID] [PMCID]
30. Bitter W, Houben ENG, Bottai D, Brodin P, Brown EJ. Systematic Genetic Nomenclature. PLoS Pathog. 2009;5(10):e1000507. [DOI:10.1371/journal.ppat.1000507] [PMID] [PMCID]
31. Xu J, Laine O, Masciocchi M, Manoranjan J, Smith J, Du SJ, et al. A unique Mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol. 2007;66(3):787-800. [DOI:10.1111/j.1365-2958.2007.05959.x] [PMID]
32. Sørensen AL, Nagai S, Houen G, Andersen P, Andersen AB. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun. 1995;63(5):1710-7. [DOI:10.1128/iai.63.5.1710-1717.1995] [PMID] [PMCID]
33. Mustafa AS, Oftung F, Amoudy HA, Madi NM, Abal AT, Shaban F, et al. Multiple Epitopes from the Mycobacterium tuberculosis ESAT-6 Antigen Are Recognized by Antigen-Specific Human T Cell Lines. Clin Infect Dis. 2000;30(3):S201-S5. [DOI:10.1086/313862] [PMID]
34. Brock I, Weldingh K, Leyten Eliane MS, Arend Sandra M, Ravn P, Andersen P. Specific T-Cell Epitopes for Immunoassay-Based Diagnosis of Mycobacterium tuberculosis Infection. J Clin Microbiol. 2004;42(6):2379-87. [DOI:10.1128/JCM.42.6.2379-2387.2004] [PMID] [PMCID]
35. Ong E, He Y, Yang Z. Epitope promiscuity and population coverage of Mycobacterium tuberculosis protein antigens in current subunit vaccines under development. Infect Genet Evol. 2020;80:104186. [DOI:10.1016/j.meegid.2020.104186] [PMID]
36. Khan A, Singh S, Galvan G, Jagannath C, Sastry KJ. Prophylactic sublingual immunization with Mycobacterium tuberculosis subunit vaccine incorporating the natural killer T cell agonist alpha-galactosylceramide enhances protective immunity to limit pulmonary and extra-pulmonary bacterial burden in mice. Vaccines. 2017;5(4):47. [DOI:10.3390/vaccines5040047] [PMID] [PMCID]
37. Mattow J, Schaible UE, Schmidt F, Hagens K, Siejak F, Brestrich G, et al. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Electrophoresis. 2003;24(19-20):3405-20. [DOI:10.1002/elps.200305601] [PMID]
38. Champion PAD, Stanley SA, Champion MM, Brown EJ, Cox JS. C-Terminal Signal Sequence Promotes Virulence Factor Secretion in Mycobacterium tuberculosis. Science. 2006;313(5793):1632-6. [DOI:10.1126/science.1131167] [PMID]
39. Houben D, Demangel C, van Ingen J, Perez J, Baldeón L, Abdallah AM, et al. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol. 2012;14(8):1287-98. [DOI:10.1111/j.1462-5822.2012.01799.x] [PMID]
40. Renshaw PS, Panagiotidou P, Whelan A, Gordon SV, Hewinson RG, Williamson RA, et al. Conclusive evidence that the major t-cell antigens of themycobacterium tuberculosis complex esat-6 and cfp-10 form a tight, 1: 1 complex and characterization of the structural properties of esat-6, cfp-10, and the esat-6· cfp-10 complex: Implications for pathogenesis and virulence. J Biol Chem. 2002;277(24):21598-603. [DOI:10.1074/jbc.M201625200] [PMID]
41. Guo S, Xue R, Li Y, Wang SM, Ren L, Xu JJ. The CFP10/ESAT6 complex of Mycobacterium tuberculosis may function as a regulator of macrophage cell death at different stages of tuberculosis infection. Med Hypotheses. 2012;78(3):389-92. [DOI:10.1016/j.mehy.2011.11.022] [PMID]
42. Trajkovic V, Singh G, Singh B, Singh S, Sharma P. Effect of Mycobacterium tuberculosis-Specific 10-Kilodalton Antigen on Macrophage Release of Tumor Necrosis Factor Alpha and Nitric Oxide. Infect Immun. 2002;70(12):6558-66. [DOI:10.1128/IAI.70.12.6558-6566.2002] [PMID] [PMCID]
43. Kohli S, Singh Y, Sharma K, Mittal A, Ehtesham NZ, Hasnain SE. Comparative genomic and proteomic analyses of PE/PPE multigene family of Mycobacterium tuberculosis H37Rv and H37Ra reveal novel and interesting differences with implications in virulence. Nucleic Acids Res. 2012;40(15):7113-22. [DOI:10.1093/nar/gks465] [PMID] [PMCID]
44. Abraham PR, Latha GS, Valluri VL, Mukhopadhyay S. Mycobacterium tuberculosis PPE protein Rv0256c induces strong B cell response in tuberculosis patients. Infect Genet Evol. 2014;22:244-9. [DOI:10.1016/j.meegid.2013.06.023] [PMID]
45. Khan N, Alam K, Nair S, Valluri Vijaya L, Murthy Kolluri JR, Mukhopadhyay S. Association of Strong Immune Responses to PPE Protein Rv1168c with Active Tuberculosis. Clin Vaccine Immunol. 2008;15(6):974-80. [DOI:10.1128/CVI.00485-07] [PMID] [PMCID]
46. Tiwari B, Soory A, Raghunand TR. An immunomodulatory role for the Mycobacterium tuberculosis region of difference 1 locus proteins PE35 (Rv3872) and PPE68 (Rv3873). FEBS J. 2014;281(6):1556-70. [DOI:10.1111/febs.12723] [PMID]
47. Akhter Y, Ehebauer MT, Mukhopadhyay S, Hasnain SE. The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: Perhaps more? Biochimie. 2012;94(1):110-6. [DOI:10.1016/j.biochi.2011.09.026] [PMID]
48. Abraham PR, Devalraju KP, Jha V, Valluri VL, Mukhopadhyay S. PPE17 (Rv1168c) protein of Mycobacterium tuberculosis detects individuals with latent TB infection. PLoS One. 2018;13(11):e0207787. [DOI:10.1371/journal.pone.0207787] [PMID] [PMCID]
49. Braibant M, Lefèvre P, de Wit L, Peirs P, Ooms J, Huygen K, et al. A Mycobacterium tuberculosis gene cluster encoding proteins of a phosphate transporter homologous to the Escherichia coli Pst system. Gene. 1996;176(1):171-6. [DOI:10.1016/0378-1119(96)00242-9] [PMID]
50. Hwang W-H, Lee W-K, Ryoo SW, Yoo K-Y, Tae G-S. Expression, purification and improved antigenicity of the Mycobacterium tuberculosis PstS1 antigen for serodiagnosis. Protein Expr Purif. 2014;95:77-83. [DOI:10.1016/j.pep.2013.11.011] [PMID]
51. Xiao T, Jiang Y, Li G, Pang H, Zhao L, Zhao X, et al. Polymorphism of MPT64 and PstS1 in Mycobacterium tuberculosis is not likely to affect relative immune reaction in human. Medicine (Baltimore). 2019;98(49):e18073. [DOI:10.1097/MD.0000000000018073] [PMID] [PMCID]
52. Palma C, Schiavoni G, Abalsamo L, Mattei F, Piccaro G, Sanchez M, et al. Mycobacterium tuberculosis PstS1 amplifies IFN-γ and induces IL-17/IL-22 responses by unrelated memory CD4+ T cells via dendritic cell activation. Eur J Immunol. 2013;43(9):2386-97. [DOI:10.1002/eji.201243245] [PMID]
53. De Araujo L, da Silva N, Leung J, Mello FC S. Close contact interferon-gamma response to the new PstS1 (285-374): CPF10: a preliminary 1-year follow-up study. BMC Res Notes. 2023;10(1):1-9. [DOI:10.1186/s13104-016-2360-4] [PMID] [PMCID]
54. Kozak Robert A, Alexander David C, Liao R, Sherman David R, Behr Marcel A. Region of Difference 2 Contributes to Virulence of Mycobacterium tuberculosis. Infect Immun. 2011;79(1):59-66. [DOI:10.1128/IAI.00824-10] [PMID] [PMCID]
55. Hoel IM, Sviland L, Syre H, Dyrhol-Riise AM, Skarstein I, Jebsen P, et al. Diagnosis of extrapulmonary tuberculosis using the MPT64 antigen detection test in a high-income low tuberculosis prevalence setting. BMC Infect Dis. 2020;20(1):130. [DOI:10.1186/s12879-020-4852-z] [PMID] [PMCID]
56. Fu R, Wang C, Shi C, Lu M, Fang Z, Lu J, et al. An Improved Whole-Blood Gamma Interferon Assay Based on the CFP21-MPT64 Fusion Protein. Clin Vaccine Immunol. 2009;16(5):686-91. [DOI:10.1128/CVI.00486-08] [PMID] [PMCID]
57. Blokpoel MCJ, O'Toole R, Smeulders MJ, Williams HD. Development and application of unstable GFP variants to kinetic studies of mycobacterial gene expression. J Microbiol Methods. 2003;54(2):203-11. [DOI:10.1016/S0167-7012(03)00044-7] [PMID]
58. Mustafa AS. Progress towards the development of new anti-tuberculosis vaccines. Focus on Tuberculosis Research. 2005. p. 47-76.
59. Al-Attiyah R, Mustafa AS. Characterization of human cellular immune responses to novel Mycobacterium tuberculosis antigens encoded by genomic regions absent in Mycobacterium bovis BCG. Infect Immun. 2008;76(9):4190-8. [DOI:10.1128/IAI.00199-08] [PMID] [PMCID]
60. Jones Gareth J, Gordon Stephen V, Hewinson RG, Vordermeier HM. Screening of Predicted Secreted Antigens from Mycobacterium bovis Reveals the Immunodominance of the ESAT-6 Protein Family. Infect Immun. 2010;78(3):1326-32. [DOI:10.1128/IAI.01246-09] [PMID] [PMCID]
61. Lewinsohn DM, Swarbrick GM, Cansler ME, Null MD, Rajaraman V, Frieder MM, et al. Human Mycobacterium tuberculosis CD8 T cell antigens/epitopes identified by a proteomic peptide library. PloS One. 2013;8(6):e67016. [DOI:10.1371/journal.pone.0067016] [PMID] [PMCID]
62. Das S, Das SC, Verma R. Occurrence of RD9 Region and 500 bp Fragment among Clinical Isolates of Mycobacterium tuberculosis and Mycobacterium bovis. Microbiol Immunol. 2007;51(2):231-4. [DOI:10.1111/j.1348-0421.2007.tb03905.x] [PMID]
63. Mahmood A, Srivastava S, Tripathi S, Ansari MA, Owais M, Arora A. Molecular characterization of secretory proteins Rv3619c and Rv3620c from Mycobacterium tuberculosis H37Rv. The FEBS J. 2011;278(2):341-53. [DOI:10.1111/j.1742-4658.2010.07958.x] [PMID]
64. Lightbody KL, Renshaw PS, Collins ML, Wright RL, Hunt DM, Gordon SV, et al. Characterisation of complex formation between members of the Mycobacterium tuberculosis complex CFP-10/ESAT-6 protein family: towards an understanding of the rules governing complex formation and thereby functional flexibility. FEMS Microbiol Lett. 2004;238(1):255-62. https://doi.org/10.1016/j.femsle.2004.07.043 [DOI:10.1111/j.1574-6968.2004.tb09764.x] [PMID]
65. Okkels Limei M, Andersen P. Protein-Protein Interactions of Proteins from the ESAT-6 Family of Mycobacterium tuberculosis. J Bacteriol. 2004;186(8):2487-91. [DOI:10.1128/JB.186.8.2487-2491.2004] [PMID] [PMCID]
66. Simeone R, Bottai D, Brosch R. ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol. 2009;12(1):4-10. [DOI:10.1016/j.mib.2008.11.003] [PMID]
67. Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, et al. Inhibition of Respiration by Nitric Oxide Induces a Mycobacterium tuberculosis Dormancy Program. J Exp Med. 2003;198(5):705-13. [DOI:10.1084/jem.20030205] [PMID] [PMCID]
68. Magombedze G, Dowdy D, Mulder N. Latent tuberculosis: models, computational efforts and the pathogen's regulatory mechanisms during dormancy. Front Bioeng Biotechnol. 2013;1(4). [DOI:10.3389/fbioe.2013.00004] [PMID] [PMCID]
69. Chen T, He L, Deng W, Xie J. The Mycobacterium DosR regulon structure and diversity revealed by comparative genomic analysis. Journal of cellular biochemistry. 2013;114(1):1-6. [DOI:10.1002/jcb.24302] [PMID]
70. Roberts DM, Liao RP, Wisedchaisri G, Hol WGJ, Sherman DR. Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J Biol Chem. 2004;279(22):23082-7. [DOI:10.1074/jbc.M401230200] [PMID] [PMCID]
71. Bartek IL, Rutherford R, Gruppo V, Morton RA, Morris RP, Klein MR, et al. The DosR regulon of M. tuberculosis and antibacterial tolerance. Tuberculosis. 2009;89(4):310-6. [DOI:10.1016/j.tube.2009.06.001] [PMID] [PMCID]
72. Hozumi H, Tsujimura K, Yamamura Y, Seto S, Uchijima M, Nagata T, et al. Immunogenicity of dormancy-related antigens in individuals infected with Mycobacterium tuberculosis in Japan. Int J Tuberc Lung Dis. 2013;17(6):818-24. [DOI:10.5588/ijtld.12.0695] [PMID]
73. Su H, Zhu S, Zhu L, Kong C, Huang Q, Zhang Z, et al. Mycobacterium tuberculosis latent antigen Rv2029c from the multistage DNA vaccine A39 drives TH1 responses via TLR-mediated macrophage activation. Front Microbiol. 2017;8:2266. [DOI:10.3389/fmicb.2017.02266] [PMID] [PMCID]
74. Roupie V, Romano M, Zhang L, Korf H, Lin May Y, Franken Kees LMC, et al. Immunogenicity of Eight Dormancy Regulon-Encoded Proteins of Mycobacterium tuberculosis in DNA-Vaccinated and Tuberculosis-Infected Mice. Infect Immun. 2007;75(2):941-9. [DOI:10.1128/IAI.01137-06] [PMID] [PMCID]
75. Doddam SN, Peddireddy V, Ahmed N. Mycobacterium tuberculosis DosR regulon gene Rv2004c encodes a novel antigen with pro-inflammatory functions and potential diagnostic application for detection of latent tuberculosis. Front Immunol. 2017;8:712. [DOI:10.3389/fimmu.2017.00712] [PMID] [PMCID]
76. Belay M, Legesse M, Mihret A, Bekele Y, Ottenhoff THM, Franken KLMC, et al. Pro-and anti-inflammatory cytokines against Rv2031 are elevated during latent tuberculosis: a study in cohorts of tuberculosis patients, household contacts and community controls in an endemic setting. PLoS One. 2015;10(4):e0124134. [DOI:10.1371/journal.pone.0124134] [PMID] [PMCID]
77. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol. 2002;46(3):709-17. [DOI:10.1046/j.1365-2958.2002.03237.x] [PMID]
78. Temmerman ST, Place S, Debrie A-S, Locht C, Mascart F. Effector Functions of Heparin-Binding Hemagglutinin-Specific CD8+ T Lymphocytes in Latent Human Tuberculosis. J Infect Dis. 2005;192(2):226-32. [DOI:10.1086/430930] [PMID]
79. Chiacchio T, Delogu G, Vanini V, Cuzzi G, De Maio F, Pinnetti C, et al. Immune characterization of the HBHA-specific response in Mycobacterium tuberculosis-infected patients with or without HIV infection. PLoS One. 2017;12(8):e0183846. [DOI:10.1371/journal.pone.0183846] [PMID] [PMCID]
80. Tang J, Huang Y, Cai Z, Ma Y. Mycobacterial heparin-binding hemagglutinin (HBHA)-induced interferon-γ release assay (IGRA) for discrimination of latent and active tuberculosis: A systematic review and meta-analysis. Plos One. 2021;16(7):e0254571. [DOI:10.1371/journal.pone.0254571] [PMID] [PMCID]
81. Place S, Verscheure V, De San N, Hougardy J-M, Schepers K, Dirix V, et al. Heparin-binding, hemagglutinin-specific IFN-γ synthesis at the site of infection during active tuberculosis in humans. Am J Respir Crit Care Med. 2010;182(6):848-54. [DOI:10.1164/rccm.201001-0083OC] [PMID]
82. Villar-Hernández R, Blauenfeldt T, García-García E, Muriel-Moreno B, De Souza-Galvão ML, Millet JP, et al. Diagnostic benefits of adding EspC, EspF and Rv2348-B to the QuantiFERON Gold In-tube antigen combination. Sci Rep. 2020;10(1):13234. [DOI:10.1038/s41598-020-70204-w] [PMID] [PMCID]
83. Meier NR, Sutter TM, Jacobsen M, Ottenhoff THM, Vogt JE, Ritz N. Machine learning algorithms evaluate immune response to novel Mycobacterium tuberculosis antigens for diagnosis of tuberculosis. Front Cell Infect. 2021;10:594030. [DOI:10.3389/fcimb.2020.594030] [PMID] [PMCID]
84. Yan YH, Li MC, Liu HC, Xiao TY, Li N, Lou YL, et al. Cellular immunity evaluation of five mycobacterium tuberculosis recombinant proteins and their compositions. Zhonghua Yu Fang yi Xue Za Zhi. 2020;54(5):539-45.
85. Mehaffy C, Kruh-Garcia NA, Graham B, Jarlsberg LG, Willyerd CE, Borisov A, et al. Identification of Mycobacterium tuberculosis peptides in serum extracellular vesicles from persons with latent tuberculosis infection. J Clin Microbiol. 2020;58(6):10-1128. [DOI:10.1128/JCM.00393-20] [PMID] [PMCID]
86. Pathakumari B, Devasundaram S, Maddineni P, Raja A. Rv2204c, Rv0753c and Rv0009 antigens specific T cell responses in latent and active TB - a flow cytometry-based analysis. Int J Med Microbiol. 2018;308(2):297-305. [DOI:10.1016/j.ijmm.2017.12.001] [PMID]
87. Yuan C-H, Zhang S, Xiang F, Gong H, Wang Q, Chen Y, et al. Secreted Rv1768 from RD14 of Mycobacterium tuberculosis activates macrophages and induces a strong IFN-γ-releasing of CD4+ T cells. Front Cell Infect Microbiol. 2019;9:341. [DOI:10.3389/fcimb.2019.00341] [PMID] [PMCID]
88. Dubey N, Khan MZ, Kumar S, Sharma A, Das L, Bhaduri A, et al. Mycobacterium tuberculosis Peptidyl Prolyl Isomerase A Interacts With Host Integrin Receptor to Exacerbate Disease Progression. J Infect Dis. 2021;224(8):1383-93. [DOI:10.1093/infdis/jiab081] [PMID]
89. Bagheri Z, Soleimanpour S, Ghazvini K, Shamsian SA, Sabet F. A Review on Occupational Tuberculosis and Its Diagnostic Methods in Iran. Med J Mashhad Univ Med Sci. 2021;64(1):2529-39.
90. Yang Y, Dong L, Liang Z, Liu T, Cui Y, Lin Y, et al. Predicting epitopes on the Rv0674 protein from Mycobacterium tuberculosis H37 RV. Zhonghua Yu Fang yi Xue Za Zhi. 2019;14(4):394-400.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله میکروب شناسی پزشکی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق   ناشر: موسسه فرنام

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb Publishr: Farname Inc.