سال 17، شماره 5 - ( مهر - آبان 1402 )                   جلد 17 شماره 5 صفحات 504-492 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shakib P, Ramazanzade R, Saki R, Amiri R. A Systematic Review Study on the Role of Long Non-coding RNAs (lncRNAs) in Mycobacterium tuberculosis. Iran J Med Microbiol 2023; 17 (5) :492-504
URL: http://ijmm.ir/article-1-1979-fa.html
شکیب پگاه، رمضان زاده رشید، ساکی رضا، امیری راضیه. یک مطالعه مروری سیستماتیک بر روی نقش RNA های طولانی غیر کد کننده (lncRNAs) در مایکوباکتریوم توبرکلوزیس. مجله میکروب شناسی پزشکی ایران. 1402; 17 (5) :492-504

URL: http://ijmm.ir/article-1-1979-fa.html


1- مرکز تحقیقات داروهای گیاهی رازی، دانشگاه علوم پزشکی لرستان، خرم آباد، ایران
2- گروه میکروب‌شناسی، دانشگاه علوم پزشکی اردبیل، اردبیل، ایران
3- گروه میکروب‌شناسی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران ، kasras47@yahoo.com
4- گروه میکروب‌شناسی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه، ایران
چکیده:   (888 مشاهده)

مایکوباکتریوم توبرکلوزیس باکتری عامل بیماری سل است. در این باکتری،RNA های طولانی غیرکدکننده (lncRNA) می توانند به طور مثبت و منفی بیان ژن های مختلف را از طریق مکانیسم های مختلف، مانند فعال کردن فاکتورهای رونویسی یا اتصال به اهداف DNA کمپلکس کروماتین، تغییر دهند. هدف مطالعه حاضر بررسی lncRNA ها در مایکوباکتریوم توبرکلوزیس بود. جستجو با کلیدواژه های شامل lncRNAs، lncRNA، Long ncRNA، LincRNAs، Long ncRNA،RNA  طولانی غیرکدکننده، TB، سل ریوی، سل ریوی، مایکوباکتریوم توبرکلوزیس در Pub Med، Web of Science Direct، Scopus، پایگاه های اطلاعات علمی و Google Scholar  بین سال های ۲۰۰۰ تا ۲۰۲۰ انجام گرفت. در مجموع ۱۲۴ مقاله در PubMed، ScienceDirect، Scopus، Ovid، Cochrane  و Google Scholar یافت شد که ۲۰ مقاله از پایگاه‌های داده انتخاب شدند. در بازنگری عنوان و چکیده، ۸۴ مقاله از مطالعه ما حذف شدند. در نهایت، ۱۹ مقاله در مطالعه ما گنجانده شد که شامل ۴۴۴۴ بیمار مبتلا به سل بود. تمام مطالعات در چین با استفاده از روش qRT-PCR انجام شده بود. نتایج مطالعه حاضر ارتباط قابل قبولی بین lncRNA و SNP با سل و مایکوباکتریوم توبرکلوزیس را نشان داد. همچنین، این عوامل تنظیمی به عنوان نشانگرهای زیستی تشخیصی و توسعه درمان های جدید نقش اساسی دارند.

متن کامل [PDF 707 kb]   (301 دریافت)    
نوع مطالعه: مقاله مروری | موضوع مقاله: باکتری شناسی پزشکی
دریافت: 1402/3/4 | پذیرش: 1402/6/29 | انتشار الکترونیک: 1402/9/8

فهرست منابع
1. Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol. 2018;16(4):202-13. [DOI:10.1038/nrmicro.2018.8] [PMID]
2. Faksri K, Kaewprasert O, Ong RT, Suriyaphol P, Prammananan T, Teo YY, et al. Comparisons of whole-genome sequencing and phenotypic drug susceptibility testing for Mycobacterium tuberculosis causing MDR-TB and XDR-TB in Thailand. Int J Antimicrob Agents. 2019;54(2):109-16. [DOI:10.1016/j.ijantimicag.2019.04.004] [PMID]
3. Marimani M, Ahmad A, Duse A. The role of epigenetics, bacterial and host factors in progression of Mycobacterium tuberculosis infection. Tuberculosis. 2018;113:200-14. [DOI:10.1016/j.tube.2018.10.009] [PMID]
4. Owens NA, Young CC, Laurentius LB, De P, Chatterjee D, Porter MD. Detection of the tuberculosis biomarker mannose-capped lipoarabinomannan in human serum: Impact of sample pretreatment with perchloric acid. Anal Chim Acta. 2019;1046:140-7. [DOI:10.1016/j.aca.2018.09.037] [PMID] [PMCID]
5. Norbis L, Alagna R, Tortoli E, Codecasa LR, Migliori GB, Cirillo DM. Challenges and perspectives in the diagnosis of extrapulmonary tuberculosis. Expert Rev Anti Infect Ther. 2014;12(5):633-47. [DOI:10.1586/14787210.2014.899900] [PMID]
6. Loo JFC, Kwok HC, Leung CCH, Wu SY, Law ILG, Cheung YK, et al. Sample-to-answer on molecular diagnosis of bacterial infection using integrated lab--on--a--disc. Biosens Bioelectron. 2017;93:212-9. [DOI:10.1016/j.bios.2016.09.001] [PMID]
7. Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene. 2012;31(43):4577-87. [DOI:10.1038/onc.2011.621] [PMID] [PMCID]
8. St Laurent G, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet. 2015;31(5):239-51. [DOI:10.1016/j.tig.2015.03.007] [PMID] [PMCID]
9. Chen LL. Linking Long Noncoding RNA Localization and Function. Trends Biochem Sci. 2016;41(9):761-72. https://doi.org/10.1016/j.tibs.2016.07.006 [DOI:10.1016/j.tibs.2016.07.003]
10. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10(6):925-33. [DOI:10.4161/rna.24604] [PMID] [PMCID]
11. Zur Bruegge J, Einspanier R, Sharbati S. A Long Journey Ahead: Long Non-coding RNAs in Bacterial Infections. Front Cell Infect Microbiol. 2017;7:95. [DOI:10.3389/fcimb.2017.00095] [PMID] [PMCID]
12. Zhang X, Guo J, Fan S, Li Y, Wei L, Yang X, et al. Screening and identification of six serum microRNAs as novel potential combination biomarkers for pulmonary tuberculosis diagnosis. PLoS One. 2013;8(12):e81076. [DOI:10.1371/journal.pone.0081076] [PMID] [PMCID]
13. Wu Q, Zhong H, Bai H, Liu T, Song J, Wen Y, et al. Clinical relevance of the lnc-HNF1B-3:1 genetic polymorphisms in Western Chinese tuberculosis patients. J Clin Lab Anal. 2020;34(3):e23076-e. [DOI:10.1002/jcla.23076] [PMID] [PMCID]
14. Chen Z-L, Wei L-L, Shi L-Y, Li M, Jiang T-T, Chen J, et al. Screening and identification of lncRNAs as potential biomarkers for pulmonary tuberculosis. Sci Rep. 2017;7(1):16751-. [DOI:10.1038/s41598-017-17146-y] [PMID] [PMCID]
15. Bai H, Wu Q, Hu X, Wu T, Song J, Liu T, et al. Clinical significance of lnc-AC145676.2.1-6 and lnc-TGS1-1 and their variants in western Chinese tuberculosis patients. J Obstet Gynecol Cancer Res. 2019;84:8-14. [DOI:10.1016/j.ijid.2019.04.018] [PMID]
16. Fu Y, Gao K, Tao E, Li R, Yi Z. Aberrantly Expressed Long Non-Coding RNAs In CD8(+) T Cells Response to Active Tuberculosis. J Cell Biochem. 2017;118(12):4275-84. [DOI:10.1002/jcb.26078] [PMID]
17. He J, Ou Q, Liu C, Shi L, Zhao C, Xu Y, et al. Differential expression of long non-coding RNAs in patients with tuberculosis infection. Tuberculosis. 2017;107:73-9. [DOI:10.1016/j.tube.2017.08.007] [PMID]
18. Huang S, Huang Z, Luo Q, Qing C. The Expression of lncRNA NEAT1 in Human Tuberculosis and Its Antituberculosis Effect. Biomed Res Int. 2018;2018:9529072. [DOI:10.1155/2018/9529072] [PMID] [PMCID]
19. Yan H, Xu R, Zhang X, Wang Q, Pang J, Zhang X, et al. Identifying differentially expressed long non-coding RNAs in PBMCs in response to the infection of multidrug-resistant tuberculosis. Infect Drug Resist. 2018;11:945-59. [DOI:10.2147/IDR.S154255] [PMID] [PMCID]
20. Song J, Liu T, Zhao Z, Hu X, Wu Q, Peng W, et al. Genetic polymorphisms of long noncoding RNA RP11-37B2.1 associate with susceptibility of tuberculosis and adverse events of antituberculosis drugs in west China. J Clin Lab Anal. 2019;33(5):e22880. [DOI:10.1002/jcla.22880] [PMID] [PMCID]
21. Li M, Cui J, Niu W, Huang J, Feng T, Sun B, et al. Long non-coding PCED1B-AS1 regulates macrophage apoptosis and autophagy by sponging miR-155 in active tuberculosis. Biochem Biophys Res Commun. 2019;509(3):803-9. [DOI:10.1016/j.bbrc.2019.01.005] [PMID]
22. Li J, Wu L, Guo W, Chen J, Hu X, Wang M, et al. Clinical relevance of LINC00152 and its variants in western Chinese tuberculosis patients. Oncotarget. 2017;8(70):115456-68. [DOI:10.18632/oncotarget.23297] [PMID] [PMCID]
23. Song J, Liu T, Jiao L, Zhao Z, Hu X, Wu Q, et al. RIPK2 polymorphisms and susceptibility to tuberculosis in a Western Chinese Han population. Infect Genet Evol. 2019;75:103950. [DOI:10.1016/j.meegid.2019.103950] [PMID]
24. Yi Z, Li J, Gao K, Fu Y. Identifcation of differentially expressed long non-coding RNAs in CD4+ T cells response to latent tuberculosis infection. J Infect. 2014;69(6):558-68. [DOI:10.1016/j.jinf.2014.06.016] [PMID] [PMCID]
25. Zhao Z, Zhang M, Ying J, Hu X, Zhang J, Zhou Y, et al. Significance of genetic polymorphisms in long non-coding RNA AC079767.4 in tuberculosis susceptibility and clinical phenotype in Western Chinese Han population. Sci Rep. 2017;7(1):965. [DOI:10.1038/s41598-017-01163-y] [PMID] [PMCID]
26. Zhao Z, Peng W, Wu L, Ying B. Correlation between lncRNA AC079767.4 variants and liver injury from antituberculosis treatment in West China. J Infect Chemother. 2020;26(1):63-8. [DOI:10.1016/j.jiac.2019.07.003] [PMID]
27. Fu Y, Xu X, Xue J, Duan W, Yi Z. Deregulated lncRNAs in B cells from patients with active tuberculosis. PLoS One. 2017;12(1):e0170712. [DOI:10.1371/journal.pone.0170712] [PMID] [PMCID]
28. Wang Y, Zhong H, Xie X, Chen CY, Huang D, Shen L, et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci U S A. 2015;112(29):E3883-92. [DOI:10.1073/pnas.1501662112] [PMID] [PMCID]
29. Wang L, Xie B, Zhang P, Ge Y, Wang Y, Zhang D. LOC152742 as a biomarker in the diagnosis of pulmonary tuberculosis infection. J Cell Biochem. 2019;120:8949-55. [DOI:10.1002/jcb.27452] [PMID]
30. Zhang X, Liang Z, Zhang Y, Dai K, Zhu M, Wang J, et al. Comprehensive analysis of long non-coding RNAs expression pattern in the pathogenesis of pulmonary tuberculosis. Genomics. 2020;112(2):1970-7. [DOI:10.1016/j.ygeno.2019.11.009] [PMID]
31. Li ZB, Han YS, Wei LL, Shi LY, Yi WJ, Chen J, et al. Screening and identification of plasma lncRNAs uc.48+ and NR_105053 as potential novel biomarkers for cured pulmonary tuberculosis. Int J Infect Dis. 2020;92:141-50. [DOI:10.1016/j.ijid.2020.01.005] [PMID]
32. Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol. 2015;37(3):239-49. [DOI:10.1007/s00281-015-0490-8] [PMID] [PMCID]
33. Jasenosky LD, Scriba TJ, Hanekom WA, Goldfeld AE. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev. 2015;264(1):74-87. [DOI:10.1111/imr.12274] [PMID]
34. Yang X, Yang J, Wang J, Wen Q, Wang H, He J, et al. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis. Sci Rep. 2016;6:38963. [DOI:10.1038/srep38963] [PMID] [PMCID]
35. Yao Y, Jiang Q, Jiang L, Wu J, Zhang Q, Wang J, et al. Lnc-SGK1 induced by Helicobacter pylori infection and highsalt diet promote Th2 and Th17 differentiation in human gastric cancer by SGK1/Jun B signaling. Oncotarget. 2016;7(15):20549-60. [DOI:10.18632/oncotarget.7823] [PMID] [PMCID]
36. who. Tuberculosis 2019 [Available from: https://www.who.int/health-topics/tuberculosis#tab=tab_1.
37. Abel L, El-Baghdadi J, Bousfiha AA, Casanova JL, Schurr E. Human genetics of tuberculosis: a long and winding road. Philos Trans R Soc Lond B Biol Sci. 2014;369(1645):20130428. [DOI:10.1098/rstb.2013.0428] [PMID] [PMCID]
38. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev. 2016;96(4):1297-325. [DOI:10.1152/physrev.00041.2015] [PMID]
39. Wang P, Xu J, Wang Y, Cao X. An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science. 2017;358(6366):1051-5. [DOI:10.1126/science.aao0409] [PMID]
40. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ, Gardiner BB, et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 2008;18(9):1433-45. [DOI:10.1101/gr.078378.108] [PMID] [PMCID]
41. Li CH, Chen Y. Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol. 2013;45(8):1895-910. [DOI:10.1016/j.biocel.2013.05.030] [PMID]
42. Zhang B, Li C, Sun Z. Long non-coding RNA LINC00346, LINC00578, LINC00673, LINC00671, LINC00261, and SNHG9 are novel prognostic markers for pancreatic cancer. Am J Transl Res. 2018;10(8):2648-58.
43. Lin Y, Holden V, Dhilipkannah P, Deepak J, Todd NW, Jiang F. A Non-Coding RNA Landscape of Bronchial Epitheliums of Lung Cancer Patients. Biomedicines. 2020;8(4):88. [DOI:10.3390/biomedicines8040088] [PMID] [PMCID]
44. Yin Q, Wu A, Liu M. Plasma Long Non-Coding RNA (lncRNA) GAS5 is a New Biomarker for Coronary Artery Disease. Med Sci Monit. 2017;23:6042-8. [DOI:10.12659/MSM.907118] [PMID] [PMCID]
45. Li C, Lv Y, Shao C, Chen C, Zhang T, Wei Y, et al. Tumor-derived exosomal lncRNA GAS5 as a biomarker for early-stage non-small-cell lung cancer diagnosis. J Cell Physiol. 2019;234(11):20721-7. [DOI:10.1002/jcp.28678] [PMID]
46. Li J, Yang C, Li Y, Chen A, Li L, You Z. LncRNA GAS5 suppresses ovarian cancer by inducing inflammasome formation. Biosci Rep. 2018;38(2):BSR20171150. [DOI:10.1042/BSR20171150] [PMID] [PMCID]
47. Yoshimura H, Matsuda Y, Yamamoto M, Michishita M, Takahashi K, Sasaki N, et al. Reduced expression of the H19 long non-coding RNA inhibits pancreatic cancer metastasis. Lab Invest. 2018;98(6):814-24. [DOI:10.1038/s41374-018-0048-1] [PMID]
48. Wang J, Zhao L, Shang K, Liu F, Che J, Li H, et al. Long non-coding RNA H19, a novel therapeutic target for pancreatic cancer. Mol Med. 2020;26(1):30. [DOI:10.1186/s10020-020-00156-4] [PMID] [PMCID]
49. Abbastabar M, Sarfi M, Golestani A, Khalili E. lncRNA involvement in hepatocellular carcinoma metastasis and prognosis. Excli j. 2018;17:900-13.
50. Xie H, Xue JD, Chao F, Jin YF, Fu Q. Long non-coding RNA-H19 antagonism protects against renal fibrosis. Oncotarget. 2016;7(32):51473-81. [DOI:10.18632/oncotarget.10444] [PMID] [PMCID]
51. Yu X, Li Z, Zheng H, Chan MT, Wu WK. NEAT1: A novel cancer-related long non-coding RNA. Cell Prolif. 2017;50(2):e12329. [DOI:10.1111/cpr.12329] [PMID] [PMCID]
52. Zhang L, Liu B, Deng QH, Li JX. LncRNA BRE-AS1 acts as a tumor suppressor factor in bladder cancer via mediating STAT3. Eur Rev Med Pharmacol Sci. 2020;24(10):5320-8.
53. Zhang M, Wu J, Zhong W, Zhao Z, Liu Z. Long non-coding RNA BRE-AS1 represses non-small cell lung cancer cell growth and survival via up-regulating NR4A3. Arch Biochem Biophys. 2018;660:53-63. [DOI:10.1016/j.abb.2018.09.013] [PMID]
54. Yao Z, Zhang Q, Guo F, Guo S, Yang B, Liu B, et al. Long Noncoding RNA PCED1B-AS1 Promotes the Warburg Effect and Tumorigenesis by Upregulating HIF-1α in Glioblastoma. Cell Transplant. 2020;29:963689720906777. [DOI:10.1177/0963689720906777] [PMID] [PMCID]
55. Yu H, Li SB. Role of LINC00152 in non-small cell lung cancer. J Zhejiang Univ Sci B. 2020;21(3):179-91. [DOI:10.1631/jzus.B1900312] [PMID] [PMCID]
56. Yu Y, Yang J, Li Q, Xu B, Lian Y, Miao L. LINC00152: A pivotal oncogenic long non-coding RNA in human cancers. Cell Prolif. 2017;50(4):e12349. [DOI:10.1111/cpr.12349] [PMID] [PMCID]
57. Xiong Y, Gu Y, Wang F, Li L, Zhu M, Wang N, et al. LINC01857 as an oncogene regulates CREB1 activation by interacting with CREBBP in breast cancer. J Cell Physiol. 2019;234(8):14031-9. [DOI:10.1002/jcp.28090] [PMID]
58. Han J, Zhou W, Jia M, Wen J, Jiang J, Shi J, et al. Expression quantitative trait loci in long non-coding RNA PAX8-AS1 are associated with decreased risk of cervical cancer. Mol Genet Genomics. 2016;291(4):1743-8. [DOI:10.1007/s00438-016-1217-9] [PMID]
59. Bahari G, Hashemi M, Naderi M, Sadeghi-Bojd S, Taheri M. Long non-coding RNA PAX8-AS1 polymorphisms increase the risk of childhood acute lymphoblastic leukemia. Biomed Rep. 2018;8(2):184-90. [DOI:10.3892/br.2017.1028] [PMID] [PMCID]
60. Zheng X, Zhang J, Fang T, Wang X, Wang S, Ma Z, et al. The long non-coding RNA PIK3CD-AS2 promotes lung adenocarcinoma progression via YBX1-mediated suppression of p53 pathway. Oncogenesis. 2020;9(3):34. [DOI:10.1038/s41389-020-0217-0] [PMID] [PMCID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله میکروب شناسی پزشکی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق   ناشر: موسسه فرنام

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb Publishr: Farname Inc.