year 13, Issue 5 (November - December 2019)                   Iran J Med Microbiol 2019, 13(5): 346-354 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi S, Nasiri M J, Dadashi M, Darban Sarokhalil ِ. Optimized Method for Isolation of Nontuberculous Mycobacteria from Hospital Aquatic Sources. Iran J Med Microbiol 2019; 13 (5) :346-354
URL: http://ijmm.ir/article-1-963-en.html
1- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
2- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3- Department of Microbiology, School of medicine, Alborz University of Medical Sciences, Karaj, Iran
4- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran , davood_darban@yahoo.com
Abstract:   (5938 Views)
Background: Aquatic ecosystems are an important source of nontuberculous mycobacteria (NTM) that can cause different diseases in human. Since culture of mycobacteria needs long-term incubation, fast-growing microorganisms and contaminants in the environment usually prevents the isolation of mycobacteria. Here, we compare different treatment protocols and describe a method that increases the recovery and improve the culturability of NTM from aqueous samples.
Materials and methods: A total of 35 samples from the water sources like tap water, and medical devices such as manometer, dialysis devices, nebulizers, ventilator and dental units were collected. Containers containing 50 mL of the sample were immediately transferred for culture on Lowenstein-Jensen medium to the laboratory and examined. For better isolation of NTM, different concentrations of NaOH, sodium dodecyl sulphate (SDS), cetylpyridinium chlorid (CPC), oxalic acid and cyclohexamide in culture media were examined.
Results: Culture media with 1% solution of NaOH, 3% SDS and 5% oxalic acid was completely effective to eliminate the contaminants and it also showed the lowest inhibitory effect on mycobacteria. The concentrations between 0.3 gr to 1 gr of cyclohexamide had the best inhibitory effect on growth of fungi.
Conclusion: Culture media with NaOH 1%, SDS 3%, 5% of oxalic acid and 0.3-1 gr cyclohexamide can increase the recovery and improve the culturability of NTM from aqueous samples.
Full-Text [PDF 708 kb]   (1765 Downloads) |   |   Full-Text (HTML)  (3540 Views)  
Type of Study: Original Research Article | Subject: Nosocomial infections
Received: 2019/09/22 | Accepted: 2020/01/12 | ePublished: 2020/01/27

References
1. Gopinath, K and Singh S. Non-tuberculous mycobacteria in TB-endemic countries: are we neglecting the danger? PLoS Negl Trop Dis. 2010; 4(4): e615. [DOI:10.1371/journal.pntd.0000615] [PMID] [PMCID]
2. Tortoli, E. Clinical manifestations of nontuberculous mycobacteria infections. Clin Microbiol Infect, 2009; 15(10): 906-910. [DOI:10.1111/j.1469-0691.2009.03014.x] [PMID]
3. Primm, TP, CA Lucero, and JO Falkinham. Health impacts of environmental mycobacteria. Clin Microbiol Rev. 2004; 17(1): 98-106. [DOI:10.1128/CMR.17.1.98-106.2004] [PMID] [PMCID]
4. Nasiri, MJ, Dabiri, H, Darban-Sarokhalil, D, & Shahraki, AH. Prevalence of non-tuberculosis mycobacterial infections among tuberculosis suspects in Iran: systematic review and meta-analysis. PloS one. 2015; 10(6), e0129073. [DOI:10.1371/journal.pone.0129073] [PMID] [PMCID]
5. Falkinham JO. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol. 2009;107(2):356-67. [DOI:10.1111/j.1365-2672.2009.04161.x] [PMID]
6. Thomson R, Carter R, Gilpin C, Coulter C and Hargreaves M. Comparison of Methods for Processing Drinking Water Samples for the Isolation of Mycobacterium avium and Mycobacterium intracellulare. Appl Environ Microbiol. 2008; 74(10): 3094-309. [DOI:10.1128/AEM.02009-07] [PMID] [PMCID]
7. Adekambi T, Colson P, Drancourt M. rpoB-based identification of non-pigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol. 2003; 41(12):5699-5708. [DOI:10.1128/JCM.41.12.5699-5708.2003] [PMID] [PMCID]
8. Falkinham, JO. Environmental sources of nontuberculous mycobacteria. Clin Chest Med. 2015; 36(1), 35-41. [DOI:10.1016/j.ccm.2014.10.003] [PMID]
9. Vaerewijck, MJ, Huys, G, Palomino, JC, Swings, J, & Portaels, F. Mycobacteria in drinking water distribution systems: ecology and significance for human health. FEMS Microbiol Rev. 2005; 29(5), 911-934. [DOI:10.1016/j.femsre.2005.02.001] [PMID]
10. Castillo-Rodal, AI, Mazari-Hiriart, M, Lloret-Sánchez, LT, Sachman-Ruiz, B, Vinuesa, P, & López-Vidal, Y. Potentially pathogenic nontuberculous mycobacteria found in aquatic systems. Analysis from a reclaimed water and water distribution system in Mexico City. Eur J Clin Microbiol Infect Dis. 2012; 31(5), 683-694. [DOI:10.1007/s10096-011-1359-y] [PMID]
11. Falkinham, JO. Current epidemiologic trends of the nontuberculous mycobacteria (NTM). Curr Environ Health Rep. 2016; 3(2), 161-167. [DOI:10.1007/s40572-016-0086-z] [PMID]
12. Mullis, SN, & Falkinham, JO. Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J Appl Microbiol. 2013; 115(3), 908-914. [DOI:10.1111/jam.12272] [PMID]
13. Primm, TP, Lucero CA, and Falkinham JO. Health impacts of environmental mycobacteria. Clin Microbiol Rev. 2004; 17(1): 98-106. [DOI:10.1128/CMR.17.1.98-106.2004] [PMID] [PMCID]
14. Moradi S, Nasiri MJ, Pourahmad F, Darban-Sarokhalil D. Molecular characterization of nontuberculous mycobacteria in hospital waters: a two-year surveillance study in Tehran, Iran. J Water Health. 2019; 1;17(2):350-6. [DOI:10.2166/wh.2019.294] [PMID]
15. Kamala T, Paramasivan CN, Herbert D, Venkatesan P, Prabhakar R. Evaluation of procedures for isolation of nontuberculous mycobacteria from soil and water. Appl Environ Microbiol. 1994; 1;60(3):1021-4. [DOI:10.1128/AEM.60.3.1021-1024.1994] [PMID] [PMCID]
16. Radomski N, Cambau E, Moulin L, Haenn S, Moilleron R, Lucas FS. Comparison of culture methods for isolation of nontuberculous mycobacteria from surface waters. Appl Environ Microbiol. 2010; 1;76(11):3514-20. [DOI:10.1128/AEM.02659-09] [PMID] [PMCID]
17. Neumann M, Schulze-Robbecke R, Hagenau C, Behringer K. Comparison of methods for isolation of mycobacteria from water. Appl Environ Microbiol. 1997;1;63(2):547-52. [DOI:10.1128/AEM.63.2.547-552.1997] [PMID] [PMCID]
18. Khosravi AD, Hashemi Shahraki A, Hashemzadeh M, Sheini Mehrabzadeh R, Teimoori A. Prevalence of non-tuberculous mycobacteria in hospital waters of major cities of Khuzestan Province, Iran. Front Cell Infect Microbiol. 2016;13;6:42. [DOI:10.3389/fcimb.2016.00042] [PMID] [PMCID]
19. Falsafi S, Zaker Bostanabad S, Feizabadi M M, Khavari-Nejad R A. Comparison and optimization of methods for isolation of Non-Tuberculous mycobacteria from surface water. NCMBJ. 2014; 4 (15) :115-121.
20. Rahbar, M, Lameei, A, Babazadeh, H, Yavari, SA. Isolation of rapid growing mycobacteria from soil and water in Iran. Afr J Biotechnol. 2010; 9 (24). pp. 3618-3621.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc