year 13, Issue 1 (March - April 2019)                   Iran J Med Microbiol 2019, 13(1): 69-79 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kalteh S, Ojagh S M, Tabarrayi A, Zolfaghari M. Investigating the Possibility of the Listeria Monocytogenes Entering Into a Viable But Non-Culturable (VBNC) Form and Expression of the Pathogenic Genes During the Frozen Storage of (-18ºC) Rainbow Trout Fish Nugget. Iran J Med Microbiol 2019; 13 (1) :69-79
URL: http://ijmm.ir/article-1-910-en.html
1- Department of Fishieries, Faculty of Fishieries and Environment, University of Agricultural Sciences and Natual Resources of Gorgan, Gorgan, Iran
2- Department of Fishieries, Faculty of Fishieries and Environment, University of Agricultural Sciences and Natual Resources of Gorgan, Gorgan, Iran , Mahdi_ojagh@yahoo.com
3- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
Abstract:   (6796 Views)
Background and Aims: The purpose of this study was to investigate the possibility of Listeria monocytogenes entering the VBNC state during the frozen storage and the expression of its pathogenic genes
Materials and Methods: Bacteria in 106 Colony counts of in mid log phase were inoculated into three Culture medium including Normal Saline (NS), BHI Broth and Fish Broth (FB) and kept at -18ºCfor 2 months and examined. Then, bacteria were evaluated on enriched medium BHI agar using culture methods (colony count) over times 4 and 8 hours, 2, 4, 8, 20, 30 and 60 days after the freezing shock using the method of RT-PCR for investigating the expression of 16S rRNA, hly and inlA genes; they were evaluated before and after the freezing shock.
Results: This bacterium retained its ability to cultivate until the end of the shock, but reduced its number. Freezing stopped the expression of genes of hly and inlA, as these genes were not expressed in a rich culture medium either. By adding blood to the rich culture medium of this bacterium, only the hemolysin O pathogen gene was expressed.
Conclusion: Although freezing does not lead to the introduction of this bacterium into the VBNC state, it is effective as an adverse environmental factor for the bacteria in the expression of its pathogenic genes. Blood and its agents can act as an agent for the induction and clarification of the hly gene, and the expression of pathogenic bacterial genes are independent of each other.
Full-Text [PDF 927 kb]   (1946 Downloads)    
Type of Study: Original Research Article | Subject: Food Microbiology
Received: 2019/01/12 | Accepted: 2019/05/22 | ePublished: 2019/07/22

References
1. Weller D, Andrus A, Wiedmann M, den Bakker HC. Listeria Booriae sp. nov. and Listeria Newyorkensis sp. nov., From Food Processing Environments in the USA. Int J Syst Evol Microbiol. 2015; 65(1):286-292. [DOI:10.1099/ijs.0.070839-0] [PMID]
2. Foong ChS. The Ecology of Listeria Monocytogenes in Ready-to-Eat (RTE) Meat [PhD. Dissertation]. Ames, Iowa: Iowa State University; 2003.
3. Anonymous, The Community Summary Report on Trends and Sources of Zoonoses and Zoonotic Agents in the European :union: in 2007. The EFSA Journal. 2009; 223(7):136-158. [DOI:10.2903/j.efsa.2009.223r]
4. Besnard V, Federighi M, Declerq E, Jugiao F, Cappelier JM. Environmental and Physico-Chemical Factors Induce VBNC State in Listeria Monocytogenes. INRA, EDP Sciences. 2002; 33(4):359-370. [DOI:10.1051/vetres:2002022] [PMID]
5. Farber JM, Daley EM, MacKie MT, Limerick B. A Small Outbreak of Listeriosis Potentially Linked to the Consumption of Imitation Crab Meat. Lett Appl Microbiol. 2000; 31(2):100-104. [DOI:10.1046/j.1365-2672.2000.00775.x] [PMID]
6. Oliver JD. The Public Health Significance of vViable but Nonculturable Bacteria. In: Colwell RR, Grimes DJ (Eds.), Nonculturable Microorganisms in the Environment. Berlin: Springer Science & Business Media; 2000. [DOI:10.1007/978-1-4757-0271-2_16]
7. Dillon RA, Patel TR. Listeria in Seafoods: A Review. J Food Prot. 1992; 55(12):1009-1015. [DOI:10.4315/0362-028X-55.12.1009] [PMID]
8. Kathariou S. Listeria Monocytogenes Virulence and Pathogenicity, A Food Safety Perspective. J Food Prot. 2002; 65(11):1811-1829. [DOI:10.4315/0362-028X-65.11.1811] [PMID]
9. Swaminathan B, Gerner-Smidt P. The Epidemiology of Human Listeriosis. Microbes Infect. 2007; 9(10):1236-1243. [DOI:10.1016/j.micinf.2007.05.011] [PMID]
10. Gasanov U, Hughes D, Hansbro PM. Methods for the Isolation and Identification of Listeria spp. and Listeria Monocytogenes: A Review. FEMS Microbiol. 2005; 29(5):851-875. [DOI:10.1016/j.femsre.2004.12.002] [PMID]
11. Oliver JD, Bockian R. In Vivo Resuscitation, and Virulence Towards Mice, of Viable but Nonculturable Cells of Vibrio Vulnificus. Appl Environ Microbiol. 1995; 61(7):2620-2623.
12. Oliver JD. The Viable but Non Culturable State in Bacteria. J Microbiol. 2005; 43:93-100.
13. Rice SA, McDougald D, Kjelleberg S. Vibrio Vulnificus: A Physiological and Genetic Approach to the Viable but Nonculturable Response. JIC. 2000; 6(2):115- 120. [DOI:10.1007/PL00012150]
14. Grey B, Steck TR. Concentrations of Copper Thought To Be Toxic to Escherichia coli Can Induce the Viable but Nonculturable Condition. Appl Environ Microbiol. 2001; 67(11):5325-5327. [DOI:10.1128/AEM.67.11.5325-5327.2001] [PMID] [PMCID]
15. Kong IS, Bates TC, Hülsmann A, Hassan H, Smith BE, Oliver JD. Role of Catalase and oxyR in the Viable but Nonculturable State of Vibrio Vulnificus. FEMS Microbiol Ecol. 2004; 50(3):133-142. [DOI:10.1016/j.femsec.2004.06.004] [PMID]
16. Suarez M, Gonzalez-Zorn B, Vega Y, Chico-Calero I, Vazquez-Boland J. A Rol for ActA in Epithelial Cell Invasion by Listeria Monocytogenes. Cell Microbiol. 2001; 3:853-864. [DOI:10.1046/j.1462-5822.2001.00160.x] [PMID]
17. Moors MA, Levitt B, Youngman P, Portnoy DA. Expression of Listeriolysin O and ActA by Intracellular and Extracellular Listeria Monocytogenes. Infect Immun. 1999; 67(1):131-139.
18. Wuenscher MD, Kohler S, Bubert A, Gerike U, Goebel W. The iap Gene of Listeria Monocytogenes is Essential for Cell Viability, and Its Gene Product, P60, has Bacteriolytic Activity. J Bacteriol. 1993; 175(11):3491-3501. [DOI:10.1128/jb.175.11.3491-3501.1993] [PMID] [PMCID]
19. Bierne H, Sabet C, Personnic N, Cossart P. Internalins: A Complex Family of Leucine-Rich Repeat-Containing Proteins in Listeria Monocytogenes. Microbes Infect. 2007; 9(10):1156-1166. [DOI:10.1016/j.micinf.2007.05.003] [PMID]
20. Camilli A, Tilney LG, Portnoy DA. Dual Roles of Plca in Listeria Monocytogenes Pathogenesis. Mol Microbiol. 1993; 8(1):143-157. [DOI:10.1111/j.1365-2958.1993.tb01211.x] [PMID] [PMCID]
21. Mizunoe Y, Wai SN, Ishikawa T, Takade A, Yoshida S. Resuscitation of Viable but Nonculturable Cells of Vibrio Parahaemolyticus Induced at Low Temperature Under Starvation. FEMS Microbiol Lett. 2000; 186(1):115-120. [DOI:10.1111/j.1574-6968.2000.tb09091.x] [PMID]
22. Oliver JD, Hite D, McDougald D, Andon NL, Simpson LM. Entry Into, and Resuscitation From, the Viable but Nonculturable State be Vibrio Vulnificus in an Estuarine Environment. Appl Environ Microbiol. 1995; 61(7):2624-2630.
23. Lindback T, Rottenberg ME, Roche SM, Rorvik LM. The Ability to Enter Into an Avirulent Viable but Non-Culturable (Vbnc) Form is Widespread Among Listeria Monocytogenesisolates From Salmon, Patients and Environment. Vet Res. 2010; 41(1):8. [DOI:10.1051/vetres/2009056] [PMID] [PMCID]
24. Cappelier JM, Besnard V, Roche S, Garrec N, Zundel E, Velge P, et al. Avirulence of Viable But Non-Culturable Listeria Monocytogenes Cells Demonstrated by In Vitro and In Vivo Models. EDP Sciences. 2005; 36(4):589-599. [DOI:10.1051/vetres:2005018] [PMID]
25. Jahncke ML, Collette RP, Hicks DT, Wiedmann M, Scott VN, Gall K. Treatment Options to Eliminate or Control Growth of Listeria Monocytogenes on Raw Material and on Finished Product for the Smoked Fish Industry. Food Protection Trends. 2004; 24(8):612-619.
26. Bozoglu TF, Ozilgen M, Bakir U. Survival Kinetics of Lactic Acid Starter Cultures During and After Freeze Drying. Enzyme and Microbial Technology. 1987; 9:531-537. [DOI:10.1016/0141-0229(87)90082-2]
27. Klaenhammer TR, Kleeman EG. Growth Characteristics, Bile Sensitivity, and Freeze Damage in Colonial Variants Of Lactobacillus Acidophilus. Appl Environ Microbiol. 1981; 41(6):1461-1467.
28. Nilsson L, Gram L, Huss HH. Growth Control of Listeria monocytogenes on Cold Smoked Salmon Using a Competitive Lactic Acid Bacteria. Flora J Food Prot. 1999; 62(4):336-342. [DOI:10.4315/0362-028X-62.4.336] [PMID]
29. Seu D, Boor KJ, Wiedmann M. sigB-Dependent Expression Patterns of Compatible Solute Transporter Genes opuCA and lmo1421 and the Conjugated Bile Salt Hydrolase Gene bsh in Listeria Monocytogenes. Microbiology. 2003; 149(11):3247-3256. [DOI:10.1099/mic.0.26526-0] [PMID]
30. Tan Q, Xu H, Chen T, Li P, Aguilar ZP, Xu D, Ming X, Xu F, Wei H. Differential Expression of Virulence and Stress Fitness Genes During Interaction Between Listeria Monocytogenes and Bifidobacterium Longum. Biosci Biotechnol Biochem. 2012; 76(4):699-704. [DOI:10.1271/bbb.110832] [PMID]
31. Tasara T, Stephan R. Evaluation of Housekeeping Genes in Listeria Monocytogenes as Potential Internal Control References for Normalizing mRNA Expression Levels in Stress Adaptation Models Using Real-Time PCR. FEMS Microbiol Lett. 2007; 269(2):265-272. [DOI:10.1111/j.1574-6968.2007.00633.x] [PMID]
32. Park YS, Lee SR, Kim YG. Detection of Escherichia coliO157:H7, Salmonella spp., Staphylococcus Aureus and Listeria Monocytogenesin Kimchi by Multiplex Polymerase Chain Reaction (mPCR). J Microbiol. 2006; 44(1):92-7.
33. Ragon M, Wirth T, Hollandt F, Lavenir R, Lecuit M, Le Monnier A, et al. Anew Perspectiveon Listeria Monocytogenes Evolution. PloS Pathogens. 2008; 4(9):e1000146. [DOI:10.1371/journal.ppat.1000146] [PMID] [PMCID]
34. Lou Y, Yousef AE. Characteristics of Listeria Monocytogenes Important to Food Processors. In: Ryser ET, Marth EH (eds.), Listeria, Listeriosis and Food Safety; 2 ed. New York: Marcel Dekker; 1999.
35. Uuchs RS. Listeria Monocytogenes. ASEAN Food J. 1992; 6:3-13.
36. Kuzmanović J, Ašanin R, Baltić M, Mišić D, Dimitrijević M, Stojanović M, et al. Presence of Listeria SPP in Fish Samples, Fish Product and Sea Products. Acta Veterinaria (Beograd). 2011; 61(2-3):193-203. [DOI:10.2298/AVB1103193K]
37. Fonseca F, Béal C, Corrieu G. Operating Conditions That Affect the Resistance of Lactic Acid Bacteria to Freezing and Frozen Storage. Cryobiology. 2001; 43(3):189-198. [DOI:10.1006/cryo.2001.2343] [PMID]
38. O'Brien KV, Aryana KJ, Prinyawiwatkul W, Ordonez KMC, Boeneke CA. The Effects of Frozen Storage on the Survival of Probiotic Microorganisms Found in Traditionally and Commercially Manufactured Kefir. J Dairy Sci. 2016; 99(9):7043-7048. [DOI:10.3168/jds.2015-10284] [PMID]
39. Chavarri F J, De Paz M, Nunez M. Cryoprotective Agents for Frozen Concentrated Starters From Non-Bitter Streptococcus Lactis Strains. Biotec Letters. 1988; 10(1):11-16. [DOI:10.1007/BF01030016]
40. Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P. Relevant Factors for the Preparation of Freeze-Dried Lactic Acid Bacteria. Int Dairy J. 2004; 14(10):835-847. [DOI:10.1016/j.idairyj.2004.02.001]
41. Mazur, P. Cryobiology: The Freezing of Biological Systems. Science. 1970; 168(3934):939-949. [DOI:10.1126/science.168.3934.939] [PMID]
42. Brashears MM, Gilliland SE. Survival During Frozen and Subsequent Refrigerated Storage of Lactobacillus Acidophilus Cells as Influenced by the Growth Phase. J Dairy Sci. 1995; 78(11):2326-2335. [DOI:10.3168/jds.S0022-0302(95)76859-X]
43. Fernandez Murga ML, De Ruiz Holgado AP, De Valdez GF. Survival Rate and Enzyme Activities of Lactobacillus Acidophilus Following Frozen Storage. Cryobiology. 1998; 36(4):315-319. [DOI:10.1006/cryo.1998.2090] [PMID]
44. Harrison MA , Huang YW, Chao CH, Shineman T. Fate of Listeria Monocytogenes on Packaged, Refrigerated, and Frozen Seafood. J Food Prot. 1991; 54(7):524- 527. [DOI:10.4315/0362-028X-54.7.524] [PMID]
45. Palumbo SA, Williams A. Resistance of Listeria Monocytogenes to Freezing in Foods. Food Microbiol. 1991; 8(1):63-68. [DOI:10.1016/0740-0020(91)90017-V]
46. Wai SN, Mizunoe Y, Takade A, Yoshida S. A Comparison of Solid and Liquid Media for Resuscitation of Starvation- and Low-Temperature-Induced Nonculturable Cells of Aeromonas Hydrophila. Arch Microbiol. 2000; 173(4):307-310. [DOI:10.1007/s002030000142] [PMID]
47. Pawlowski DR, Metzger DJ, Raslawsky A, Howlett A, Siebert G, Karalus RJ, et al. Entry of Yersinia Pestis Into the Viable but Non Culturable State in a Low Temperature Tap Water Microcosm. PLoS One. 2011; 6(3):e17585. [DOI:10.1371/journal.pone.0017585] [PMID] [PMCID]
48. Zeng B, Zhao G, Cao X, Yang Z, Wang C, Hou L. Formation and Resuscitation of Viable but Nonculturable Salmonella Typhi. BioMed Res Int. 2013; 907170. [DOI:10.1155/2013/907170] [PMID] [PMCID]
49. Zolfaghari M, Rezaei M, Forozandeh Moghaddam M, Mohabbati Mobarez A, Hosseini H. The Effect of Stressful Conditions on Culturability of Listeria monocytogenes in Food Matrix. Iran J Med Microbiol. 2017; 11(5):149-158.
50. McGann P, Wiedmann M, Boor KJ. The Alternative Sigma Factor sB and the Virulence Gene Regulator PrfA Both Regulate Transcription of Listeria Monocytogenes Internalins. Appl Environ Microbiol. 2007; 73(9):2919-2930. [DOI:10.1128/AEM.02664-06] [PMID] [PMCID]
51. Duodu S, Holst-Jensen A, Skjerdal T, Cappelier JM, Pilet MF, Loncarevic S. Influence of Storage Temperature on Gene Expression and Virulence Potential of Listeria Monocytogenes Strains Grown in a Salmon Matrix. Food Microbiol. 2010; 27(6):795-801. [DOI:10.1016/j.fm.2010.04.012] [PMID]
52. Roszak DB, Grimes DJ, Colwell RR. Viable but Nonrecoverable Stage of Salmonella Enteritidis in Aquatic Systems. Can J Microbiol. 1984; 30(3):334-338. [DOI:10.1139/m84-049] [PMID]
53. Bunic S, Avery SM, Rogers AR. Listeriolysin O Production and Pathogenicity of Non-Growing Listeria Monocytogenes Stored at Refrigeration Temperature. Int J Food Microbil. 1996; 31(1-3):133-147. [DOI:10.1016/0168-1605(96)00973-7]
54. Ferreira A, O'Byrne CP, Boor KJ. Role of sB in Heat, Ethanol, Acid, and Oxidative Stress Resistance and During Carbon Starvation in Listeria Monocytogenes. Appl Environ Microbiol. 2001; 67(10):4454-4457. [DOI:10.1128/AEM.67.10.4454-4457.2001] [PMID] [PMCID]
55. Sue D, Fink D, Wiedmann M, Boor KJ. sB-Dependent Gene Induction and Expression in Listeria Monocytogenes During Osmotic and Acid Stress Conditions Simulating the Intestinal Environment. Microbiology. 2004; 150(Pt 11):3843-3855. [DOI:10.1099/mic.0.27257-0] [PMID]
56. Ferreira A, Sue D, O'Byrne CP, Boor KJ. Role of Listeria Monocytogenes SB in Survival of Lethal Acidic Conditions and in the Acquired Acid Tolerance Response. Appl Environ Microbiol. 2003; 69(5):2692-2698. [DOI:10.1128/AEM.69.5.2692-2698.2003] [PMID] [PMCID]
57. Sue D, Boor KJ, Wiedmann M. sB-Dependent Expression Patterns of Compatible Solute Transporter Genes Opuca and lmo1421 and the Conjugated Bile Salt Hydrolase Gene bsh in Listeria Monocytogenes. Microbiology. 2003; 149(Pt 11):3247-3256. [DOI:10.1099/mic.0.26526-0] [PMID]
58. Geoffroy C, Gaillard JL, Alouf JE, Berche PE. Purification, Characterization and Toxicity of the Sulfhydryl-Activated Hemolysin Listeriolysin 0 From Listeria Monocytogenes. Infect Immun. 1987; 55(1):1641-1646.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc