year 12, Issue 6 (January - February 2019)                   Iran J Med Microbiol 2019, 12(6): 371-381 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dadgar T, Vahedi Z, Yazdansetad S, Kiaei E, Asaadi H. Phenotypic Investigation of Biofilm Formation and the Prevalence of icaA and icaD Genes in Staphylococcus epidermidis Isolates . Iran J Med Microbiol. 2019; 12 (6) :371-381
URL: http://ijmm.ir/article-1-894-en.html
1- Department of Biology, Gorgan Branch, Islamic Azad University, Gorgan, Iran. , dadgar_teena@yahoo.com
2- Department of Biology, Gorgan Branch, Islamic Azad University, Gorgan, Iran.
3- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
4- Young Researchers Club, Gorgan Branch, Islamic Azad University, Gorgan, Iran
5- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
Abstract:   (1159 Views)
Background and Aims: The most important factor for pathogenicity of Staphylococcus epidermidis is the ability to produce biofilm. Identification of biofilm-forming strains using an appropriate method and recognizing the mechanisms of biofilm formation can help understand the proper use of artificial medical equipment and prevent increased drugs resistance . The aim of this study was to 1) evaluate the biofilm formation of S. epidermidis isolates using phenotypic methods such as Tube Method (TM), Congo Red Agar Method (CRA) and Microtiter Plates Method (MTP) as well as PCR of the genes icaA and icaD 2) determine the drug resistance pattern of S. epidermidis isolates and its association with biofilm formation among clinical specimens and samples of healthy carriers.
Materials and Methods: A total of 90 strains of S. epidermidis including 50 clinical isolates and 40 strains from healthy carriers were studied using the phenotypic methods TM, CRA and MTP, and the molecular PCR of the genes icaA and icaD. Antibiotic resistance profile of the strains was performed using disk diffusion method according to the CLSI standards.
Results: A total of 90 strains ( 63.34% by TM, 37.78% by CRA method and 67.79% of MTP method) were able to form biofilm. No significant differences were found between the healthy and carriers groups in terms of antibiotic resistance. The icaA and icaD genes were detected among 100% and 85.24% of the biofilm forming strains, respectively.
 Conclusions: Comparing the phenotypic and molecular methods for the detection of biofilm formation among S. epidermidis isolatesshowed that MTP is the best method with the highest sensitivity and specificity and its simultaneous use with molecular methods is recommended.
 
Full-Text [PDF 1001 kb]   (339 Downloads)    
Type of Study: Original | Subject: Medical Bacteriology
Received: 2018/12/5 | Accepted: 2019/01/30

References
1. Otto M. Staphylococcus epidermidis—the'accidental'pathogen. Nat Rev Microbiol. 2009; 7(8): 555. [DOI:10.1038/nrmicro2182]
2. Mack D, Becker P, Chatterjee I, Dobinsky S, Knobloch JK, Peters G, Rohde H, Herrmann M. Mechanisms of biofilm formation in Staphylococcus epidermidis and Staphylococcus aureus: functional molecules, regulatory circuits, and adaptive responses. Int J Med Microbiol. 2004; 294(2-3): 203-12. [DOI:10.1016/j.ijmm.2004.06.015]
3. Ciofu O, Mandsberg LF, Wang H, Høiby N. Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections. FEMS Immunol Med Microbiol. 2012; 65(2): 215-25. [DOI:10.1111/j.1574-695X.2012.00983.x]
4. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010; 35(4): 322-32. [DOI:10.1016/j.ijantimicag.2009.12.011]
5. Bazzaz BS, Khameneh B, Zarei H, Golmohammadzadeh S. Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm. Microbial pathogenesis. 2016; 93: 137-44. [DOI:10.1016/j.micpath.2015.11.031]
6. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284(5418): 1318-22. [DOI:10.1126/science.284.5418.1318]
7. De Silva GD, Kantzanou M, Justice A, Massey RC, Wilkinson AR, Day NP, Peacock SJ. The ica operon and biofilm production in coagulase-negative staphylococci associated with carriage and disease in a neonatal intensive care unit. Journal of clinical microbiology. 2002; 40(2): 382-8. [DOI:10.1128/JCM.40.02.382-388.2002]
8. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. Journal of clinical microbiology. 1985; 22(6): 996-1006.
9. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A. Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol. 2006; 24(1): 25. [DOI:10.4103/0255-0857.19890]
10. Christensen GD, Simpson WA, Bisno AL, Beachey EH. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and immunity. 1982; 37(1): 318-26.
11. Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol. 1989; 42(8): 872-4. [DOI:10.1136/jcp.42.8.872]
12. Mortazavi H, Nakhaei Moghaddam M, Abadi NS. Study of the Effect of Silver Nanoparticles on Biofilms Formation by Staphylococcus epidermidis. Journal of Rafsanjan University of Medical Sciences. 2015; 14(2): 125-36.
13. Rahimi F, Bouzari M, Maleki Z, Rahimi F. Antibiotic susceptibility pattern among Staphylococcus spp. with emphasis on detection of mecA gene in methicillin resistant Staphylococcus aureus isolates. Iranian Journal of Clinical Infectious Diseases. 2009; 4(3).
14. Arciola CR, Baldassarri L, Montanaro L. Presence of icaA and icaDGenes and slime production in a collection of Staphylococcal strains from catheter-associated infections. Journal of clinical microbiology. 2001; 39(6): 2151-6. [DOI:10.1128/JCM.39.6.2151-2156.2001]
15. Panda PS, Chaudhary U, Dube SK. Comparison of four different methods for detection of biofilm formation by uropathogens. Indian J Pathol Microbiol. 2016; 59(2): 177. [DOI:10.4103/0377-4929.182013]
16. Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz J Infect Dis. 2011; 15(4): 305-11. [DOI:10.1016/S1413-8670(11)70197-0]
17. Deka N. Comparison of Tissue Culture plate method, Tube Method and Congo Red Agar Method for the detection of biofilm formation by Coagulase Negative Staphylococcus isolated from Non-clinical Isolates. Int J Curr Microbiol App Sci. 2014; 3(10): 810-5.
18. Arslan S, Özkardes F. Slime production and antibiotic susceptibility in staphylococci isolated from clinical samples. Memórias do Instituto Oswaldo Cruz. 2007; 102(1): 29-33.
19. Satorres SE, Alcaráz LE. Prevalence of icaA and icaD genes in Staphylococcus aureus and Staphylococcus epidermidis strains isolated from patients and hospital staff. Cent Eur J Public Health. 2007; 15(2): 87-90.
20. Kord M, Ardebili A, Jamalan M, Jahanbakhsh R, Behnampour N, Ghaemi EA. Evaluation of Biofilm Formation and Presence of Ica Genes in Staphylococcus epidermidis Clinical Isolates. Osong Public Health Res Perspect. 2018; 9(4): 160. [DOI:10.24171/j.phrp.2018.9.4.04]
21. El-Khier NTA, El-Kazzaz SS, Elganainy AE. Phenotypic and Genotypic Detection of Biofilm Formation in Staphylococcus epidermidis Isolates from Retrieved Orthopaedic Implants and Prostheses. Br Microbiol Res J. 2015; 9(4): 1-10. [DOI:10.9734/BMRJ/2015/18650]
22. Růžička F, Hola V, Votava M, Tejkalova R, Horvát R, Heroldová M, Woznicová V. Biofilm detection and the clinical significance ofStaphylococcus epidermidis isolates. Folia Microbiol. 2004; 49(5): 596.
23. Gad GF, El-Feky MA, El-Rehewy MS, Hassan MA, Abolella H, El-Baky RM. Detection of icaA, icaD genes and biofilm production by Staphylococcus aureus and Staphylococcus epidermidis isolated from urinary tract catheterized patients. J Infect Dev Ctries. 2009; 3(05): 342-51.
24. Oliveira A, Maria de Lourdes RS. Comparison of methods for the detection of biofilm production in coagulase-negative staphylococci. BMC Res Notes. 2010; 3(1): 260. [DOI:10.1186/1756-0500-3-260]
25. Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JK, Heilmann C, Herrmann M, Mack D. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation‐associated protein by staphylococcal and host proteases. Molecular microbiology. 2005; 55(6): 1883-95.
26. Tormo MA, Knecht E, Götz F, Lasa I, Penades JR. Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?. Microbiology. 2005; 151(7): 2465-75. [DOI:10.1099/mic.0.27865-0]
27. Ziebuhr W, Krimmer V, Rachid S, Lößner I, Götz F, Hacker J. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Molecular microbiology. 1999; 32(2): 345-56. [DOI:10.1046/j.1365-2958.1999.01353.x]
28. Kozitskaya S, Cho SH, Dietrich K, Marre R, Naber K, Ziebuhr W. The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infection and immunity. 2004; 72(2): 1210-5. [DOI:10.1128/IAI.72.2.1210-1215.2004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2019 All Rights Reserved | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb