year 19, Issue 3 (May - June 2025)                   Iran J Med Microbiol 2025, 19(3): 182-190 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahmed Hasan S. Evaluation of Trimethoprim Nanoemulsion for Combating Antibiotic Resistant Proteus mirabilis in Urinary Tract Infections. Iran J Med Microbiol 2025; 19 (3) :182-190
URL: http://ijmm.ir/article-1-2779-en.html
Department of Basic Science, College of Nursing, Kirkuk University, Kirkuk, Iraq , sarahahmed100@uokirkuk.edu.iq
Abstract:   (189 Views)

Background and Aim: Nanoemulsion technology is considered one of the most advanced and targeted drug delivery systems. This study aimed to evaluate the efficacy of a trimethoprim-based nanoemulsion against Proteus mirabilis isolated from urinary tract infections (UTIs).
Materials and Methods: A total of 300 urine samples were collected from patients with clinically diagnosed UTIs at Azadi Teaching Hospital. Samples were cultured on blood agar and MacConkey agar. Phenotypic identification was performed, and P. mirabilis was confirmed by detection of the 16S rRNA gene. Antibiotic susceptibility was assessed using the Kirby–Bauer disk diffusion method. Trimethoprim nanoemulsions were prepared through phase diagram construction, characterized by Fourier-transform infrared spectroscopy (FTIR), zeta potential, and field emission scanning electron microscopy (FESEM), and evaluated for stability and antimicrobial activity.
Results: Of 175 culture-positive samples, 50 (28.6%) yielded P. mirabilis. PCR confirmed all isolates by amplification of a single 1500-bp 16S rRNA gene fragment. Antimicrobial susceptibility testing showed complete resistance (100%) to ampicillin, 50% resistance to trimethoprim, nalidixic acid, and ciprofloxacin, and 30% resistance to gentamicin. FTIR analysis indicated no major chemical interactions between trimethoprim and excipients, supporting drug stability. FESEM imaging demonstrated a uniform spherical morphology of the nanoemulsion droplets, consistent with high stability and bioactivity. The mean inhibition zone diameter of the trimethoprim nanoemulsion against P. mirabilis was 41.5 mm, significantly greater than that of pure trimethoprim (p < 0.001).
Conclusion: The All P. mirabilis isolates were fully susceptible to the trimethoprim nanoemulsion, highlighting its potent antibacterial activity and potential as a therapeutic strategy against multidrug-resistant strains.

Full-Text [PDF 701 kb]   (33 Downloads)    
Type of Study: Original Research Article | Subject: Antibiotic Resistance
Received: 2025/07/2 | Accepted: 2025/08/8 | ePublished: 2025/08/18

References
1. Yang A, Tian Y, Li X. Unveiling the hidden arsenal: new insights into Proteus mirabilis virulence in UTIs. Front Cell Infect Microbiol. 2024;14:1465460. [DOI:10.3389/fcimb.2024.1465460] [PMID] [PMCID]
2. Zhang S, Li Q, Wang M, Jia R, Chen S, Liu M, et al. Genomic analysis of Proteus mirabilis: Unraveling global epidemiology and antimicrobial resistance dissemination - emerging challenges for public health and biosecurity. Environ Int. 2025;199:109487. [DOI:10.1016/j.envint.2025.109487] [PMID]
3. Sujith S, Solomon AP, Rayappan JBB. Comprehensive insights into UTIs: from pathophysiology to precision diagnosis and management. Front Cell Infect Microbiol. 2024;14:1402941. [DOI:10.3389/fcimb.2024.1402941] [PMID] [PMCID]
4. Jamil RT, Foris LA, Snowden J. Proteus mirabilis Infections. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC.; 2022.
5. Nissanka MC, Dilhari A, Munasinghe JA, Priyadarshana G, Bandara K, Munaweera I, et al. Decoding Proteus mirabilis biofilms: expression of selected virulence genes and association with antibiotic resistance. BMC Microbiol. 2025;25(1):481. [DOI:10.1186/s12866-025-04212-z] [PMID] [PMCID]
6. Jacob S, Kather FS, Boddu SHS, Shah J, Nair AB. Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics. 2024;16(10):1333. [DOI:10.3390/pharmaceutics16101333] [PMID] [PMCID]
7. Pandey P, Gulati N, Makhija M, Purohit D, Dureja H. Nanoemulsion: A Novel Drug Delivery Approach for Enhancement of Bioavailability. Recent Pat Nanotechnol. 2020;14(4):276-93. [DOI:10.2174/1872210514666200604145755] [PMID]
8. Garcia CR, Malik MH, Biswas S, Tam VH, Rumbaugh KP, Li W, et al. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater Sci. 2022;10(3):633-53. [DOI:10.1039/D1BM01537K] [PMID]
9. Pernille H, Lars B, Marjukka M, Volkert S, Anne H. Sampling of urine for diagnosing urinary tract infection in general practice - First-void or mid-stream urine?. Scand J Prim Health Care. 2019;37(1):113-9. [DOI:10.1080/02813432.2019.1568708] [PMID] [PMCID]
10. Mirzaei A, Habibi M, Bouzari S, Asadi Karam MR. Characterization of Antibiotic-Susceptibility Patterns, Virulence Factor Profiles and Clonal Relatedness in Proteus mirabilis Isolates from Patients with Urinary Tract Infection in Iran. Infect Drug Resist. 2019;12:3967-79. [DOI:10.2147/IDR.S230303] [PMID] [PMCID]
11. Zhang W, Niu Z, Yin K, Liu P, Chen L. Quick identification and quantification of Proteus mirabilis by polymerase chain reaction (PCR) assays. Ann Microbiol. 2012;63(2):683-9. [DOI:10.1007/s13213-012-0520-x]
12. Aleman-Duarte MI, Aguilar-Uscanga BR, Garcia-Robles G, Ramirez-Salazar FJ, Benitez-Garcia I, Balcazar-Lopez E, et al. Improvement and Validation of a Genomic DNA Extraction Method for Human Breastmilk. Methods Protoc. 2023;6(2):34. [DOI:10.3390/mps6020034] [PMID] [PMCID]
13. Matuschek E, Copsey-Mawer S, Petersson S, Ahman J, Morris TE, Kahlmeter G. The European committee on antimicrobial susceptibility testing disc diffusion susceptibility testing method for frequently isolated anaerobic bacteria. Clin Microbiol Infect. 2023;29(6):795 e1- e7. [DOI:10.1016/j.cmi.2023.01.027] [PMID]
14. Cai D, Ye Y, Song J, Liu S, Zeng X, Zhu B, et al. A chitosan-modified tea tree oil self-nanoemulsion improves antibacterial effects in vivo and in vitro and promotes wound healing by influencing metabolic processes against multidrug-resistant bacterial infections. Int J Biol Macromol. 2024;281(Pt 3):136404. [DOI:10.1016/j.ijbiomac.2024.136404] [PMID]
15. Confessor MVA, Agreles MAA, Campos LAA, Silva Neto AF, Borges JC, Martins RM, et al. Olive oil nanoemulsion containing curcumin: antimicrobial agent against multidrug-resistant bacteria. Appl Microbiol Biotechnol. 2024;108(1):241. [DOI:10.1007/s00253-024-13057-x] [PMID] [PMCID]
16. Bunaciu AA, Hoang VD, Aboul-Enein HY. Fourier transform infrared spectroscopy used in drug excipients compatibility studies. Appl Spectrosc Rev. 2024;60(5):385-403. [DOI:10.1080/05704928.2024.2438747]
17. Saleh AH. Potential effect of green zinc oxide nanoparticles in treatment of kidney lesions that induced by Burkholderia mallei in albino male rats. Biochem Cel Arch. 2019;19:2439-43.
18. Talebi A, Momtaz H, Tajbakhsh E. Frequency distribution of virulence factors and antibiotic resistance genes in uropathogenic Proteus species isolated from clinical samples. Lett Appl Microbiol. 2023;76(2):ovac043. [DOI:10.1093/lambio/ovac043] [PMID]
19. Veisi M, Hosseini-Nave H, Tadjrobehkar O. Biofilm formation ability and swarming motility are associated with some virulence genes in Proteus mirabilis. BMC Microbiol. 2025;25(1):388. [DOI:10.1186/s12866-025-04090-5] [PMID] [PMCID]
20. Fakhraddin Raheem T, Ahmed Hasan Ali S. Prevalence and Multi-Drug Resistance Patterns of Uropathogenic E.coli isolated from Women Patients in Kirkuk city, Iraq. Iran J Med Microbiol. 2022;16(6):609-14. [DOI:10.30699/ijmm.16.6.609]
21. Ahmed Hasan S, Mohammed Bakr M. Bacteriological and Molecular Detection of Klebsiella oxytoca and its Resistance to Antibiotics among Clinical Specimens from Kirkuk, Iraq. Arch Razi Inst. 2022;77(5):1521-5.
22. Ahmed Hasan S, Fakhraddin Raheem T, Mohammed Abdulla H. Phenotypic, Antibiotyping, and Molecular Detection of Klebsiella Pneumoniae Isolates from Clinical Specimens in Kirkuk, Iraq. Arch Razi Inst. 2021;76(4):1061-7.
23. Saleh TH, Hashim ST, Malik SN, Al-Rubaii BAL. Down-Regulation of fliL Gene Expression by Ag Nanoparticles and TiO2 Nanoparticles in Pragmatic Clinical Isolates of Proteus mirabilis and Proteus vulgaris from Urinary Tract Infection. Nano Biomed Eng. 2019;11(4):321-32. [DOI:10.5101/nbe.v11i4.p321-332]
24. Abed MK, Shareef HK. Isolation and Molecular Identification of proteus mirabilis isolated from hospitals in the capital Baghdad. Indian J Forensic Med Toxicol. 2021;15(1):2216-23.
25. Abdul-hussein B, Hassan BA. Detection of MDR Proteus mirabilis Genes Isolates From Urinary Tract Infection. BioGecko. 2023;12:2230-5807.
26. Kwiecinska-Pirog J, Skowron K, Zniszczol K, Gospodarek E. The assessment of Proteus mirabilis susceptibility to ceftazidime and ciprofloxacin and the impact of these antibiotics at subinhibitory concentrations on Proteus mirabilis biofilms. Biomed Res Int. 2013;2013(1):930876. [DOI:10.1155/2013/930876] [PMID] [PMCID]
27. Alhusayni AA, Al-Khikani FHO, Aljaburi HK, Alkareawiu BAA, Abadi RM. Antibiotic susceptibility profile of bacterial uropathogens in Al-Shomali General Hospital, Babylon, Iraq. J Prev Diagn Treat Strateg Med. 2022;1(4):240-5. [DOI:10.4103/jpdtsm.jpdtsm_45_22]
28. Abed Gumar E, Salim Hamzah A, Fadhil Hamad W. Study of Some Resistance Genes in Clinical Proteus mirabilis. Arch Razi Inst. 2022;77(6):2235-42.
29. Hasan SA, Raoof WM, Ahmed KK. Antibacterial activity of deer musk and Ziziphus spina-christi against carbapebem resis-tant gram negative bacteria isolated from patients with burns and wounds. Regul Mech Biosyst. 2024;15(2):267-78. [DOI:10.15421/022439]
30. Hasan S, Raoof W, Ahmed K. First report of co-harboring bleomycin resistance gene (bleMBL) and carbapenemase resistance gene (blaNDM-1) Klebsiella pneumoniae in Iraq with comparison study among the sensitivity test, the BD PHOENIX CPO derect test, and the RAPIDEC® CARBA NP test. Sib J Life Sci Agric. 2025;16(4):208-37. [DOI:10.12731/2658-6649-2024-16-4-1249]
31. Majeed ZH, Hasan SA, Ismail RM. Evaluate the benefit effects of Dodonaea viscosa in kidney of infected rats with Staphylococcus aureus. J Pharm Negat Results. 2022;13(3):291. [DOI:10.47750/pnr.2022.13.03.046]
32. Hasan SA, Abass KS. Prevalence of Gram Negative Bacteria Isolated from Patients with Burn Infection and their Antimicrobial Susceptibility Patterns in Kirkuk City, Iraq. Indian J Public Health Res Dev. 2019;10(8):2197. [DOI:10.5958/0976-5506.2019.02184.3]
33. Hasan SA. Drug resistant bacteria and antimicrobial activity of medicinal plants. Int J Nutrology. 2025;18(3):e25312. [DOI:10.54448/ijn25312]
34. Lila ASA, Rajab AAH, Abdallah MH, Rizvi SMD, Moin A, Khafagy ES, et al. Biofilm Lifestyle in Recurrent Urinary Tract Infections. Life (Basel). 2023;13(1):148. [DOI:10.3390/life13010148] [PMID] [PMCID]
35. Chen H, Zhong Q. Physical and antimicrobial properties of self-emulsified nanoemulsions containing three synergistic essential oils. Int J Food Microbiol. 2022;365:109557. [DOI:10.1016/j.ijfoodmicro.2022.109557] [PMID]
36. Kowalczuk D. FTIR Characterization of the Development of Antimicrobial Catheter Coatings Loaded with Fluoroquinolones. Coatings. 2020;10(9):818. [DOI:10.3390/coatings10090818]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc