Articles In Press                   Back to the articles list | Back to browse issues page

XML Print


1- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
2- Department of Microbiology, Iranian Reference Health Laboratory Research Center, Ministry of Health and Medical Education. Tehran, Iran
3- Department of Microbiology, Milad Hospital, Tehran, Iran
4- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran , abedzahedi@gmail.com
Abstract:   (83 Views)

Background: Biofilm formation is a key factor in the persistence and antibiotic resistance of Pseudomonas aeruginosa, especially in intensive care units. This cross-sectional study set out to explore how common the pslA and pslB genes are in multidrug-resistant (MDR) strains of P. aeruginosa isolated from ICU patients in Tehran and how these genes relate to biofilm development.
Methods: We collected 112 P. aeruginosa isolates from patients admitted to the ICUs of 1000-bed tertiary care of Milad hospital, Tehran. The isolates were identified using standard microbiological techniques. To assess biofilm formation, we used the crystal violet staining assay using 96-well microtiter plate. DNA was extracted using a commercial kit, and Polymerase Chain Reaction (PCR) was carried out to detect the pslA/B genes.
Results:
Of 112 P. aeruginosa isolates, 92 (82.1%) P. aeruginosa isolates were biofilm producers, which the vast majority of biofilm-producing strains tested positive for both pslA (91, 98.9%) and pslB (92, 100%). One pslA-negative isolate from a wound specimen retained weak biofilm-forming capacity. These genes showed a strong association with biofilm development.
Conclusion: The high prevalence of pslA/B genes in biofilm-forming MDR isolates suggests their significant role in enhancing biofilm formation and antibiotic resistance. This highlights the need to understand biofilm-related genes in managing ICU infections, though methodological limitations warrant further validation.

     
Type of Study: Original Research Article | Subject: Microbial Genetics
Received: 2025/07/2 | Accepted: 2025/08/8 | ePublished: 2025/08/18

References
1. Narimisa N, Keshtkar A, Dadgar-Zankbar L, Bostanghadiri N, Far YR, Shahroodian S, et al. Prevalence of colistin resistance in clinical isolates of Pseudomonas aeruginosa: a systematic review and meta-analysis. Front Microbiol. 2024;15:1477836. [DOI:10.3389/fmicb.2024.1477836]
2. Khalili Y, Omidnia P, Goli HR, Zamanlou S, Babaie F, Zahedi Bialvaei A, et al. Molecular characterization of carbapenem-resistant Pseudomonas aeruginosa isolated from four medical centres in Iran. Mol Biol Rep. 2022;49(9):8281-9. [DOI:10.1007/s11033-022-07640-6] [PMID]
3. Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020;28(8):668-81. [DOI:10.1016/j.tim.2020.03.016] [PMID]
4. Jiang Z, Nero T, Mukherjee S, Olson R, Yan J. Searching for the secret of stickiness: how biofilms adhere to surfaces. Front Microbiol. 2021;12:686793. [DOI:10.3389/fmicb.2021.686793] [PMID] [PMCID]
5. Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci. 2013;14(10):20983-1005. [DOI:10.3390/ijms141020983] [PMID] [PMCID]
6. Haidar A, Muazzam A, Nadeem A, Atique R, Saeed HA, Naveed A, et al. Biofilm formation and antibiotic resistance in Pseudomonas aeruginosa. The Microbe. 2024;3:100078. [DOI:10.1016/j.microb.2024.100078]
7. Cho HH, Kwon KC, Kim S, Park Y, Koo SH. Association between Biofilm Formation and Antimicrobial Resistance in Carbapenem-Resistant Pseudomonas Aeruginosa. Ann Clin Lab Sci. 2018;48(3):363-8.
8. Ruhal R, Ghosh M, Kumar V, Jain D. Mutation of putative glycosyl transferases PslC and PslI confers susceptibility to antibiotics and leads to drastic reduction in biofilm formation in Pseudomonas aeruginosa. Microbiology. 2023;169(9):001392. [DOI:10.1099/mic.0.001392] [PMID] [PMCID]
9. Ma LZ, Wang D, Liu Y, Zhang Z, Wozniak DJ. Regulation of Biofilm Exopolysaccharide Biosynthesis and Degradation in Pseudomonas aeruginosa. Annu Rev Microbiol. 2022;76(1):413-33. [DOI:10.1146/annurev-micro-041320-111355] [PMID]
10. Valentini M, Filloux A. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria. J Biol Chem. 2016;291(24):12547-55. [DOI:10.1074/jbc.R115.711507] [PMID] [PMCID]
11. Limoli DH, Jones CJ, Wozniak DJ. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiol Spectr. 2015;3(3):10. [DOI:10.1128/microbiolspec.MB-0011-2014] [PMID] [PMCID]
12. Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB, Richardson SH, et al. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol. 2009;73(4):622-38. [DOI:10.1111/j.1365-2958.2009.06795.x] [PMID] [PMCID]
13. Whitfield C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem. 2006;75(1):39-68. [DOI:10.1146/annurev.biochem.75.103004.142545] [PMID]
14. Lee H-J, Chang H-Y, Venkatesan N, Peng H-L. Identification of amino acid residues important for the phosphomannose isomerase activity of PslB in Pseudomonas aeruginosa PAO1. FEBS letters. 2008;582(23-24):3479-83. [DOI:10.1016/j.febslet.2008.09.013] [PMID]
15. Yang L, Hu Y, Liu Y, Zhang J, Ulstrup J, Molin S. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol. 2011;13(7):1705-17. [DOI:10.1111/j.1462-2920.2011.02503.x] [PMID]
16. Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens. 2022;11(3):300. [DOI:10.3390/pathogens11030300] [PMID] [PMCID]
17. Hancock RE, Mutharia LM, Chan L, Darveau RP, Speert DP, Pier GB. Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect Immun. 1983;42(1):170-7. [DOI:10.1128/iai.42.1.170-177.1983] [PMID] [PMCID]
18. Nikbin V, Aslani MM, Sharafi Z, Hashemipour M, Shahcheraghi F, Ebrahimipour G. Molecular identification and detection of virulence genes among Pseudomonas aeruginosa isolated from different infectious origins. Iran J Microbiol. 2012;4(3):118.
19. James SL II, Melvin PW, April MB, Shelley C, Sharon KC, Tanis D, et al. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 33rd ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, USA, 2023. [Cited 2025 Aug 2]; Available from: [https://iacld.com/UpFiles/Documents/672a1c7c-d4ad-404e-b10e-97c19e21cdce.pdf]
20. Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas M, Giske C, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. [DOI:10.1111/j.1469-0691.2011.03570.x] [PMID]
21. Stepanović S, Vuković D, Hola V, Bonaventura GD, Djukić S, Ćirković I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007;115(8):891-9. [DOI:10.1111/j.1600-0463.2007.apm_630.x] [PMID]
22. Coffey BM, Anderson GG. Biofilm formation in the 96-well microtiter plate. Methods Mol Biol. 2014;1149:631-41. [DOI:10.1007/978-1-4939-0473-0_48] [PMID]
23. Merritt JH, Kadouri DE, O'Toole GA. Growing and analyzing static biofilms. Curr Protoc Microbiol. 2005;Chapter 1:Unit 1B. [DOI:10.1002/9780471729259.mc01b01s00] [PMID] [PMCID]
24. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175-9. [DOI:10.1016/S0167-7012(00)00122-6] [PMID]
25. Divyashree M, Mani MK, Karunasagar I. Association of exopolysaccharide genes in biofilm developing antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater. J Water Health. 2021;20(1):176-84. [DOI:10.2166/wh.2021.223] [PMID]
26. Khuntayaporn P, Yamprayoonswat W, Yasawong M, Chomnawang MT. Dissemination of Carbapenem-Resistance among Multidrug Resistant Pseudomonas aeruginosa carrying Metallo-Beta-Lactamase Genes, including the Novel blaIMP-65 Gene in Thailand. Infect Chemother. 2019;51(2):107-18. [DOI:10.3947/ic.2019.51.2.107] [PMID] [PMCID]
27. McDonald C, Taylor D, Linacre A. PCR in Forensic Science: A Critical Review. Genes. 2024;15(4):438. [DOI:10.3390/genes15040438] [PMID] [PMCID]
28. Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol. 2011;2:167. [DOI:10.3389/fmicb.2011.00167] [PMID] [PMCID]
29. Chen Y-T, Lohia GK, Chen S, Riquelme SA. Immunometabolic regulation of bacterial infection, biofilms, and antibiotic susceptibility. J Innate Immun. 2024;16(1):143-58. [DOI:10.1159/000536649] [PMID] [PMCID]
30. Farshchi Tabrizi A, Rafati Zomorodi A, Kakian F, Moazemy A, Kasraian L, Nakhaeitazeji S, et al. Prevalence of Chlorhexidine-Tolerant Pseudomonas aeruginosa and Correlation with Antibiotic Resistance. Iran J Med Microbiol. 2024;18(4):214-22. [DOI:10.30699/ijmm.18.4.214]
31. Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res Notes. 2020;13(1):27. [DOI:10.1186/s13104-020-4890-z] [PMID] [PMCID]
32. Masoumi N, Keshavarzi F. The pattern of antibiotic resistance and distribution of the biofilm-producing Pseudomonas aeruginosa (PelD, PslB) isolated from infectious hospital departments. SAGE Open Med. 2024;12:20503121241298826. [DOI:10.1177/20503121241298826] [PMID] [PMCID]
33. Al-Enazi NM. Evaluation of biofilm formation and expression of psl, pel, alg genes of Pseudomonas aeruginosa in exposure to detergents. Acta Microbiol Immunol Hung. 2024;71(2):127-33. [DOI:10.1556/030.2024.02277] [PMID]
34. Abdulhaq N, Nawaz Z, Zahoor MA, Siddique AB. Association of biofilm formation with multi drug resistance in clinical isolates of Pseudomonas aeruginosa. Excli j. 2020;19:201-8.
35. Hou W, Sun X, Wang Z, Zhang Y. Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections. Invest Ophthalmol Vis Sci. 2012;53(9):5624-31. [DOI:10.1167/iovs.11-9114] [PMID]
36. Ahmed MAS, Hadi HA, Jarir SA, Khan FA, Arbab MA, Hamid JM, et al. Prevalence and microbiological and genetic characteristics of multidrug-resistant Pseudomonas aeruginosa over three years in Qatar. Antimicrob Steward Healthc Epidemiol. 2022;2(1):e96. [DOI:10.1017/ash.2022.226] [PMID] [PMCID]
37. Al-Orphaly M, Hadi HA, Eltayeb FK, Al-Hail H, Samuel BG, Sultan AA, et al. Epidemiology of multidrug-resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. Msphere. 2021;6(3):e00202-21. [DOI:10.1128/mSphere.00202-21] [PMID] [PMCID]
38. Vaez H, Salehi-Abargouei A, Ghalehnoo ZR, Khademi F. Multidrug Resistant Pseudomonas aeruginosa in Iran: A Systematic Review and Metaanalysis. J Glob Infect Dis. 2018;10(4):212-7. [DOI:10.4103/jgid.jgid_113_17] [PMID] [PMCID]
39. Motevasel M, Haghkhah M. Antimicrobial Resistance Profiles and Virulence Genes of Pseudomonas aeruginosa Isolates Originated from Hospitalized Patients in Shiraz, Iran. J Med Microbiol Infect Dis. 2018;6(2):72-6. [DOI:10.29252/JoMMID.6.2.3.72]
40. Nusheen SF, Sirwar SB, Tazeen A, Mir BA. Prevalence Of Multi-Drug Resistant Pseudomonas aeruginosa in Intensive Care Units of a Tertiary Care Hospital. Prevalence. 2025;65(01).
41. Sadredinamin M, Nazemi P, Delfani S, Halimi S. Antibiotic Resistance Patterns of Gram-Negative Bacilli Isolated from Inpatients Admitted to Various Wards of a Tertiary Hospital in Tehran, Iran. Arch Pediatr Infect Dis. 2025;13(13):e157490. [DOI:10.5812/apid-157490]
42. Wang X, Liu M, Yu C, Li J, Zhou X. Biofilm formation: mechanistic insights and therapeutic targets. Mol Biomed. 2023;4(1):49. [DOI:10.1186/s43556-023-00164-w] [PMID] [PMCID]
43. Ghaderzadeh M, Shalchian A, Irajian G, Sadeghsalehi H, Zahedi bialvaei A, Sabet B. Artificial Intelligence in Drug Discovery and Development Against Antimicrobial Resistance: A Narrative Review. Iran J Med Microbiol. 2024;18(3):135-47. [DOI:10.30699/ijmm.18.3.135]
44. Zahedi Bialvaei A, Razavi S, Haghighat FN, Hemmati A, Akhavan MM, Jeddi-Tehrani M, et al. Monoclonal antibody directed to the PilQ -PilA DSL region in Pseudomonas aeruginosa improves survival of infected mice with antibiotic combination. Microb Pathog. 2021;158:105060. [DOI:10.1016/j.micpath.2021.105060] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc