year 19, Issue 3 (May - June 2025)                   Iran J Med Microbiol 2025, 19(3): 159-170 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Inggraini M, Ilsan N A, Krishanti N P R A, Priyanto J A, Anindita R, Haq F A H, et al . Evaluation of Omphisa fuscidentalis Larvae as a Virulence Model Injected with Bacteria from Healthy Individuals and Hospitalized Patients. Iran J Med Microbiol 2025; 19 (3) :159-170
URL: http://ijmm.ir/article-1-2644-en.html
1- Department of Medical Laboratory Technology, STIKes Mitra Keluarga, Bekasi City, Indonesia , maulin.inggraini@stikesmitrakeluarga.ac.id
2- Department of Medical Laboratory Technology, STIKes Mitra Keluarga, Bekasi City, Indonesia
3- Research Center for Applied Zoology, National Research and Innovation Agency, Soekarno Science and Techno Park, Bogor, Indonesia
4- Division of Microbiology, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB University), Bogor, Indonesia
5- Department of Pharmacy, STIKes Mitra Keluarga, Bekasi City, Indonesia
6- Department of Nursing, STIKes Mitra Keluarga, Bekasi City, Indonesia
7- Department of Nutrition, STIKes Mitra Keluarga, Bekasi City, Indonesia
Abstract:   (230 Views)

Background and Aim: One of the animal models for bacterial virulence testing is Omphisa (O.) fuscidentalis. The purpose of this study was to evaluate O. fuscidentalis larvae as an animal model for bacterial virulence testing in healthy individuals and hospitalized patients.
Materials and Methods: The design of this study was experimental. Bacterial samples were obtained from Mitra Keluarga Hospital, Bekasi, Indonesia. Molecular identification of bacteria was confirmed using partial 16S rRNA gene sequencing. Identification and susceptibility testing of bacteria was performed using Vitek 2 compact. The dose treatment of bacterial isolates Staphylococcus (S.) haemolyticus, Enterococcus (E.) faecalis, and Klebsiella (K.) pneumoniae (103, 104, 105) was carried out on survivability of O. fuscidentalis larvae over 24 hr post-injection.
Results: Klebsiella pneumoniae strains were resistant to more than five classes of antibiotics. The lowest survival percentage was obtained in O. fuscidentalis larvae injected with K. pneumoniae. Microscopic observation of dead O. fuscidentalis larvae showed hemocytes from melanized larvae exhibited swelling.
Conclusion: Although this research is still basic, O. fuscidentalis larvae showed to be a probable promising alternative model to assess bacterial virulence. However, comparative studies with established test animals are needed.

Full-Text [PDF 917 kb]   (37 Downloads)    
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2025/04/22 | Accepted: 2025/07/27 | ePublished: 2025/08/18

References
1. Kaito C, Murakami K, Imai L, Furuta K. Animal infection models using non-mammals. Microbiol Immunol. 2020;64(9):585-92. [DOI:10.1111/1348-0421.12834] [PMID] [PMCID]
2. Kay S, Edwards J, Brown J, Dixon R. Galleria mellonella Infection Model Identifies Both High and Low Lethality of Clostridium perfringens Toxigenic Strains and Their Response to Antimicrobials. Front Microbiol. 2019;10:1281. [DOI:10.3389/fmicb.2019.01281] [PMID] [PMCID]
3. Tsai CJ, Loh JM, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2015;7(3):214-29. [DOI:10.1080/21505594.2015.1135289] [PMID] [PMCID]
4. Ten KE, Muzahid NH, Rahman S, Tan HS. Use of the waxworm Galleria mellonella larvae as an infection model to study Acinetobacter baumannii. PLoS One. 2023;18(4):e0283960. [DOI:10.1371/journal.pone.0283960] [PMID] [PMCID]
5. Villani S, Calcagnile M, Demitri C, Alifano P. Galleria mellonella (Greater Wax Moth) as a Reliable Animal Model to Study the Efficacy of Nanomaterials in Fighting Pathogens. Nanomaterials (Basel). 2025;15(1):67. [DOI:10.3390/nano15010067] [PMID] [PMCID]
6. Ignasiak K, Maxwell A. Galleria mellonella (greater wax moth) larvae as a model for antibiotic susceptibility testing and acute toxicity trials. BMC Res Notes. 2017;10(1):428. [DOI:10.1186/s13104-017-2757-8] [PMID] [PMCID]
7. Andrea A, Krogfelt KA, Jenssen H. Methods and Challenges of Using the Greater Wax Moth (Galleria mellonella) as a Model Organism in Antimicrobial Compound Discovery. Microorganisms. 2019;7(3):85. [DOI:10.3390/microorganisms7030085] [PMID] [PMCID]
8. Cools F, Torfs E, Aizawa J, Vanhoutte B, Maes L, Caljon G, et al. Optimization and Characterization of a Galleria mellonella Larval Infection Model for Virulence Studies and the Evaluation of Therapeutics Against Streptococcus pneumoniae. Front Microbiol. 2019;10:311. [DOI:10.3389/fmicb.2019.00311] [PMID] [PMCID]
9. Sułek M, Kordaczuk J, Mak P, Śmiałek-Bartyzel J, Hułas-Stasiak M, Wojda I. Immune priming modulates Galleria mellonella and Pseudomonas entomophila interaction. Antimicrobial properties of Kazal peptide Pr13a. Front Immunol. 2024;15:1358247. [DOI:10.3389/fimmu.2024.1358247] [PMID] [PMCID]
10. Wright CL, Kavanagh O. Galleria mellonella as a novel in vivo model to screen natural product-derived modulators of innate immunity. Appl Sci. 2022;12(13):6587. [DOI:10.3390/app12136587]
11. Firacative C, Khan A, Duan S, Ferreira-Paim K, Leemon D, Meyer W. Rearing and Maintenance of Galleria mellonella and Its Application to Study Fungal Virulence. J Fungi (Basel). 2020;6(3):130. [DOI:10.3390/jof6030130] [PMID] [PMCID]
12. Inggraini M, Ilsan NA, Romadhona VA, Anindita R. Pengujian Kemampuan Larva Ulat Bambu (Omphisa fuscidentalis) sebagai Hewan Uji Virulensi Bakteri Klebsiella pneumoniae. J Bioshell. 2023;12(2):134-40. [DOI:10.56013/bio.v12i2.2317]
13. Ilsan NA, Inggrain M, Nurfajriah S, Yunita M, Priyanto JA, Ramanda V. Virulence evaluation of Aeromonas spp. KS-1 isolated from kitchen sponge using Omphisa fuscidentalis larvae. Hayati J Biosciences. 2024;31(4):613-20. [DOI:10.4308/hjb.31.4.613-620]
14. Ilsan NA, Yunita M, Dewi NK, Irham LM, Sipriyadi, Nurfajriah S, et al. Potentially virulent multi-drug resistant Escherichia fergusonii isolated from inanimate surface in a medical university: Omphisa fuscidentalis as an alternative for bacterial virulence determination. Diagnostics. 2023;13(2):279. [DOI:10.3390/diagnostics13020279] [PMID] [PMCID]
15. Ilsan NA, Nurfajriah S, Inggraini M, Krishanti NPRA, Yunita M, Sipriyadi, et al. Application of miniaturized most probable number method for bacterial detection in water samples: detection of multi-drug-resistant Ralstonia insidiosa in drinking water. J Water Health. 2024;22(9):1618-27. [DOI:10.2166/wh.2024.086] [PMID]
16. Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol. 1998;64(2):795-9. [DOI:10.1128/AEM.64.2.795-799.1998] [PMID] [PMCID]
17. Ménard G, Rouillon A, Cattoir V, Donnio P-Y. Galleria mellonella as a suitable model of bacterial infection: past, present and future. Front Cell Infect Microbiol. 2021;11:782733. [DOI:10.3389/fcimb.2021.782733] [PMID] [PMCID]
18. Bzazou El Ouazzani ZE, Benaicha H, Reklaoui L, Alloudane R, Barrijal S. First detection of colistin resistance encoding gene mcr-1 in clinical enterobacteriaceae isolates in Morocco. Iran J Med Microbiol. 2024;18(1):33-40. [DOI:10.30699/ijmm.18.1.33]
19. Mahdi Oraibi S. Klebsiella pneumoniae, Staphylococcus aureus and Proteus mirabilis Virulence Factors Detected from Hospitals in Nasiriyah, Iraq, 2022. Iran J Med Microbiol. 2024;18(3):209-13. [DOI:10.30699/ijmm.18.3.209]
20. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. [DOI:10.1111/j.1469-0691.2011.03570.x] [PMID]
21. Admella J, Torrents E. Investigating bacterial infections in Galleria mellonella larvae: Insights into pathogen dissemination and behavior. J Invertebr Pathol. 2023;200:107975. [DOI:10.1016/j.jip.2023.107975] [PMID]
22. Pereira TC, de Barros PP, Fugisaki LRO, Rossoni RD, Ribeiro FC, de Menezes RT, et al. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. J Fungi (Basel). 2018;4(4):128. [DOI:10.3390/jof4040128] [PMID] [PMCID]
23. Quansah E, Ramoji A, Thieme L, Mirza K, Goering B, Makarewicz O, et al. Label-free multimodal imaging of infected Galleria mellonella larvae. Sci Rep. 2022;12(1):20416. [DOI:10.1038/s41598-022-24846-7] [PMID] [PMCID]
24. Shubin AV, Demidyuk IV, Komissarov AA, Rafieva LM, Kostrov SV. Cytoplasmic vacuolization in cell death and survival. Oncotarget. 2016;7(34):55863-89. [DOI:10.18632/oncotarget.10150] [PMID] [PMCID]
25. Kazek M, Kaczmarek A, Wrońska AK, Boguś MI. Conidiobolus coronatus induces oxidative stress and autophagy response in Galleria mellonella larvae. PLoS One. 2020;15(2):e0228407. [DOI:10.1371/journal.pone.0228407] [PMID] [PMCID]
26. Eltwisy HO, Twisy HO, Hafez MH, Sayed IM, El-Mokhtar MA. Clinical Infections, Antibiotic Resistance, and Pathogenesis of Staphylococcus haemolyticus. Microorganisms. 2022;10(6). [DOI:10.3390/microorganisms10061130] [PMID] [PMCID]
27. Bryce AN, Doocey R, Handy R. Staphylococcus haemolyticus meningitis and bacteremia in an allogenic stem cell transplant patient. IDCases. 2021;26:e01259. [DOI:10.1016/j.idcr.2021.e01259] [PMID] [PMCID]
28. Panda S, Singh DV. Biofilm Formation by ica-Negative Ocular Isolates of Staphylococcus haemolyticus. Front Microbiol. 2018;9:2687. [DOI:10.3389/fmicb.2018.02687] [PMID] [PMCID]
29. Cave R, Misra R, Chen J, Wang S, Mkrtchyan HV. Whole genome sequencing revealed new molecular characteristics in multidrug resistant staphylococci recovered from high frequency touched surfaces in London. Sci Rep. 2019;9(1):9637. [DOI:10.1038/s41598-019-45886-6] [PMID] [PMCID]
30. Pindar C, Viau RA. Staphylococcus haemolyticus epididymo-orchitis and bacteraemia: a case report. JMM Case Rep. 2018;5(7):e005157. [DOI:10.1099/jmmcr.0.005157] [PMID] [PMCID]
31. Mishra B, Khader R, Felix LO, Frate M, Mylonakis E, Meschwitz S, et al. A Substituted Diphenyl Amide Based Novel Scaffold Inhibits Staphylococcus aureus Virulence in a Galleria mellonella Infection Model. Front Microbiol. 2021;12:723133. [DOI:10.3389/fmicb.2021.723133] [PMID] [PMCID]
32. Sheehan G, Tully L, Kavanagh KA. Candida albicans increases the pathogenicity of Staphylococcus aureus during polymicrobial infection of Galleria mellonella larvae. Microbiology (Reading). 2020;166(4):375-85. [DOI:10.1099/mic.0.000892] [PMID] [PMCID]
33. Lozoya-Pérez NE, García-Carnero LC, Martínez-Álvarez JA, Martínez-Duncker I, Mora-Montes HM. Tenebrio molitor as an Alternative Model to Analyze the Sporothrix Species Virulence. Infect Drug Resist. 2021;14:2059-72. [DOI:10.2147/IDR.S312553] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc