year 19, Issue 4 (July - August 2025)                   Iran J Med Microbiol 2025, 19(4): 283-290 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohseni M, Ahady M T, Fardin M. Antibiotic Resistance Profiling and mecA Gene Detection in Diabetic Foot Infections: A Study from Ardabil City, Iran. Iran J Med Microbiol 2025; 19 (4) :283-290
URL: http://ijmm.ir/article-1-2562-en.html
1- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
2- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran , mot_ahadi@iauardabil.ac.ir
Abstract:   (509 Views)

Background and Aim: Diabetic foot infections (DFIs) are common complications for individuals suffering from diabetes. The aim of this study was to monitor the presence of the mecA gene in diabetic foot infections in diabetic patients in Ardabil city, northwest Iran.
Materials and Methods: A total of eighty samples were collected from Imam Khomeini Hospital in Ardabil, Iran, between March and February 2023. Bacterial isolates were identified using conventional microbiological tests, and their antibiotic susceptibility was tested. The presence of the mecA gene was determined by PCR assay. 
Results & Conclusion: A total of 119 bacterial strains were isolated from 80 diabetic foot ulcer samples. The most common aerobic Gram-positive bacteria were Staphylococcus aureus (n=34) and coagulase-negative Staphylococcus spp. (n=21). Enterobacteriaceae included Escherichia coli (n=18), Citrobacter spp. (n=5), and Enterobacter spp. (n=5). Enterococcus spp. were found in 18 isolates. Gram-negative aerobic bacteria included Pseudomonas aeruginosa (n=8) and Acinetobacter spp. (n=5). The main anaerobic isolate was Bacteroides fragilis (n=5). Thirteen MRSA strains were detected, 12 of which carried the mecA gene; one strain was MRSA by cefoxitin testing but lacked mecA, suggesting alternative resistance mechanisms. All Gram-positive isolates were susceptible to linezolid, and all Enterobacteriaceae were sensitive to imipenem. S. aureus and B. fragilis were the predominant aerobic and anaerobic bacteria, respectively. These findings support the early use of combined antimicrobial therapy for diabetic foot infections.

Full-Text [PDF 524 kb]   (38 Downloads)    
Type of Study: Brief Original Article | Subject: Medical Bacteriology
Received: 2025/06/26 | Accepted: 2025/09/9 | ePublished: 2025/10/10

References
1. Liang T, Liang Z, Wu S, Ding Y, Wu Q, Gu B. Global prevalence of Staphylococcus aureus in food products and its relationship with the occurrence and development of diabetes mellitus. Med Adv. 2023;1(1):53-78. [DOI:10.1002/med4.6]
2. Ako-Nai AK, Ikem IC, Akinloye OO, Aboderin AO, Ikem RT, Kassim OO. Characterization of bacterial isolates from diabetic foot infections in Ile-Ife, Southwestern Nigeria. Foot. 2006;16(3):158-64. [DOI:10.1016/j.foot.2006.05.001]
3. Roberts AD, Simon GL. Diabetic foot infections: the role of microbiology and antibiotic treatment. InSeminars in vascular surgery. 2012. Vol. 25, No. 2, pp. 75-81. Philadelphia, PA, U.S.: W.B. Saunders Company Publisher. [DOI:10.1053/j.semvascsurg.2012.04.010] [PMID]
4. Shankar EM, Mohan V, Premalatha G, Srinivasan RS, Usha AR. Bacterial etiology of diabetic foot infections in South India. Eur J Intern Med. 2005;16(8):567-70. [DOI:10.1016/j.ejim.2005.06.016] [PMID]
5. Bode LG, van Wunnik P, Vaessen N, Savelkoul PH, Smeets LC. Rapid detection of methicillin-resistant Staphylococcus aureus in screening samples by relative quantification between the mecA gene and the SA442 gene. J Microbiol Methods. 2012;89(2):129-32. [DOI:10.1016/j.mimet.2012.02.014] [PMID]
6. Zubair M, Malik A, Ahmad J. Clinico-microbiological study and antimicrobial drug resistance profile of diabetic foot infections in North India. Foot. 2011;21(1):6-14. [DOI:10.1016/j.foot.2010.10.003] [PMID]
7. Akhi MT, Ghotaslou R, Beheshtirouy S, Asgharzadeh M, Pirzadeh T, Asghari B, et al. Antibiotic susceptibility pattern of aerobic and anaerobic bacteria isolated from surgical site infection of hospitalized patients. Jundishapur J Microbiol. 2015;8(7):e20309. [DOI:10.5812/jjm.20309v2]
8. Mohammadi S, Sekawi Z, Monjezi A, Maleki MH, Soroush S, Sadeghifard N, et al. Emergence of SCCmec type III with variable antimicrobial resistance profiles and spa types among methicillin-resistant Staphylococcus aureus isolated from healthcare-and community-acquired infections in the west of Iran. Int J Infect Dis. 2014;25:152-8. [DOI:10.1016/j.ijid.2014.02.018] [PMID]
9. Hasan MR, Brunstein JD, Al-Rawahi G, Tan R, Thomas E, Tilley P. Optimal Use of MRSA Select and PCR to Maximize Sensitivity and Specificity of MRSA Detection. Curr Microbiol. 2013;66(1):61-3. [DOI:10.1007/s00284-012-0241-1] [PMID]
10. Lee AS, De Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, et al. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018;4(1):1-23. [DOI:10.1038/nrdp.2018.33] [PMID]
11. Ghoreyshizadeh E, Manouchehrifar M, Ramazanzadeh R, Peeri Doghaheh H, Amani M, Arzanlou M. Occurrence and characteristics of toxigenic Staphylococcus aureus in retail foods in Iran. Foodborne Pathog Dis. 2024;21(5):331-8. [DOI:10.1089/fpd.2023.0122] [PMID]
12. Zenelaj B, Bouvet C, Lipsky BA, Uçkay I. Do diabetic foot infections with methicillin-resistant Staphylococcus aureus differ from those with other pathogens?. Int J Low Extrem Wounds. 2014;13(4):263-72. [DOI:10.1177/1534734614550311] [PMID]
13. Manouchehrifar M, Khademi F, Doghaheh HP, Habibzadeh S, Arzanlou M. Macrolide-Lincosamide resistance and virulence genes in Staphylococcus aureus isolated from clinical specimens in Ardabil, Iran. Iran J Pathol. 2023;18(4):415. [DOI:10.30699/ijp.2023.1987077.3049] [PMID] [PMCID]
14. Taha AB. Relationship and susceptibility profile of Staphylococcus aureus infection diabetic foot ulcers with Staphylococcus aureus nasal carriage. Foot. 2013;23(1):11-6. [DOI:10.1016/j.foot.2012.10.003] [PMID]
15. Yaghootdoos P, Hossainpour H, Kooti S, Jalilian FA. Identification of extended-spectrum beta-lactamase (ESBLs) and colistin resistance genes in Escherichia coli isolated from Blattella germanica (German cockroaches) by dot blot assay in Hamadan hospitals, Iran-2018. Acta Microbiol Bulg. 2022;38(2):107-12.
16. Hossainpour H, Mahmoudi H. Revolutionizing Microbial Infection Diagnosis: The Role of Artificial Intelligence. Iran J Med Microbiol. 2024;18(2):66-79. [DOI:10.30699/ijmm.18.2.66]
17. Rasheed NA, Hussein NR. Methicillin-resistant Staphylococcus aureus carriage rate and molecular characterization of the staphylococcal cassette chromosome mec among Syrian refugees in Iraq. Int J Infect Dis. 2020;91:218-22. [DOI:10.1016/j.ijid.2019.12.006] [PMID]
18. Kandemir Ö, Akbay E, Şahin E, Milcan A, Gen R. Risk factors for infection of the diabetic foot with multi-antibiotic resistant microorganisms. J Infect. 2007;54(5):439-45. [DOI:10.1016/j.jinf.2006.08.013] [PMID]
19. Sadeghi J, Mansouri S. Molecular characterization and antibiotic resistance of clinical isolates of methicillin‐resistant Staphylococcus aureus obtained from Southeast of Iran (Kerman). Apmis. 2014;122(5):405-11. [DOI:10.1111/apm.12158] [PMID]
20. Asgharzadeh M, Kafil HS, Khakpour M. Comparison of mycobacterial interspersed repetitive unit-variable number tandem repeat and IS6110-RFLP methods in identifying epidemiological links in patients with tuberculosis in Northwest of Iran. Ann Microbiol. 2008;58(2):333-9. [DOI:10.1007/BF03175339]
21. Mendes JJ, Marques-Costa A, Vilela C, Neves J, Candeias N, Cavaco-Silva P, et al. Clinical and bacteriological survey of diabetic foot infections in Lisbon. Diabetes Res Clin Pract. 2012;95(1):153-61. [DOI:10.1016/j.diabres.2011.10.001] [PMID]
22. Shanmugam P, Jeya M. The bacteriology of diabetic foot ulcers, with a special reference to multidrug resistant strains. J Clin Diagn Res. 2013;7(3):441. [DOI:10.7860/JCDR/2013/5091.2794] [PMID] [PMCID]
23. Al Benwan K, Al Mulla A, Rotimi VO. A study of the microbiology of diabetic foot infections in a teaching hospital in Kuwait. J Infect Public Health. 2012;5(1):1-8. [DOI:10.1016/j.jiph.2011.07.004] [PMID]
24. Perez LR, Dias C, d'Azevedo PA. Agar dilution and agar screen with cefoxitin and oxacillin: what is known and what is unknown in detection of meticillin-resistant Staphylococcus aureus. J Med Microbiol. 2008;57(8):954-6. [DOI:10.1099/jmm.0.46992-0] [PMID]
25. Pappu AK, Sinha A, Johnson A. Microbiological profile of diabetic foot ulcer. Calicut Med J. 2011;9(3):1-4.
26. Palazzo IC, Rehder A, Darini AL. Quantitative disk diffusion as a convenient method for determining minimum inhibitory concentrations of oxacillin for staphylococci strains. J Microbiol Methods. 2007;71(3):186-90. [DOI:10.1016/j.mimet.2007.08.014] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc