Articles In Press                   Back to the articles list | Back to browse issues page

XML Print


1- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya
2- Department of Pharmacy, Faculty of Medicine, Surabaya, Indonesia , sukardiman@ff.unair.ac.id
3- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
4- Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
Abstract:   (98 Views)

Background and Objective: Ventilator-associated pneumonia (VAP) is a severe infection occurring in mechanically ventilated ICU patients with Pseudomonas aeruginosa being the leading etiology. This pathogen frequently develops resistance to multiple antibiotic, including through biofilm formation. Hence, this study aims to evaluate the association between in-vitro biofilm production and antimicrobial susceptibility of Pseudomonas aeruginosa in the planktonic state.
Methods This is a pilot study analyzing seven P. aeruginosa strains isolated from VAP patients at Dr. Soetomo General Hospital, Surabaya, Indonesia. Bacteria were identified from endotracheal aspirates using Gram staining, oxidase testing, and the VITEK® 2 system. Biofilm production was assessed via crystal violet staining, and antimicrobial susceptibility was determined by broth microdilution. Statistical analysis was performed with the Mann-Whitney nonparametric test using GraphPad Prism 9 software.
Results & Conclusion: Significant differences were observed in the biofilm production and antimicrobial susceptibility of P. aeruginosa isolates from VAP patients against ceftazidime, piperacillin-tazobactam, cefepime, aztreonam, levofloxacin, and piperacillin. Strong biofilm producers showed higher resistance, especially to ceftazidime, piperacillin-tazobactam, and piperacillin, while weak biofilm producers had minimal resistance, except to ciprofloxacin, ticarcillin-clavulanate, and levofloxacin. Colistin showed MIC values of ≤2 µg/mL against all isolates. Our findings indicate biofilm formation as a critical factor influencing resistance, emphasizing the need to consider biofilm-producing capacity when selecting treatment strategies for VAP caused by P. aeruginosa.

     
Type of Study: Brief Original Article | Subject: Antibiotic Resistance
Received: 2025/04/26 | Accepted: 2025/07/29 | ePublished: 2025/08/18

References
1. Levy MM. A new definition of ventilator-associated pneumonia: far from perfect, better than before. Ann Am Thorac Soc. 2013;10(6):644-5. [DOI:10.1513/AnnalsATS.201310-361ED] [PMID]
2. Li Y, Roberts JA, Walker MM, Aslan AT, Harris PNA, Sime FB. The global epidemiology of ventilator-associated pneumonia caused by multi-drug resistant Pseudomonas aeruginosa: A systematic review and meta-analysis. Int J Infect Dis. 2024;139:78-85. [DOI:10.1016/j.ijid.2023.11.023] [PMID]
3. Kohbodi GA, Rajasurya V, Noor A. Ventilator-Associated Pneumonia. StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC.; 2022.
4. Xue LY, Gaowa S, Wang W, Zhao F, Zhu HC, Yu XY, et al. Ventilator-associated pneumonia in patients with cerebral hemorrhage: Impact on mortality and microbiological characterization. Med Clin (Barc). 2020;154(10):400-5. [DOI:10.1016/j.medcli.2020.01.003] [PMID]
5. Semet C. The ongoing challenge of ventilator-associated pneumonia: epidemiology, prevention, and risk factors for mortality in a secondary care hospital intensive care unit. Infect Prev Pract. 2023;5(4):100320. [DOI:10.1016/j.infpip.2023.100320] [PMID] [PMCID]
6. Sadigov A, Mamedova I, Mammmadov K. Ventilator-associated pneumonia and in-hospital mortality: which risk factors may predict in-hospital mortality in such patients?. J Lung Health Dis. 2019;3(4):8-12. [DOI:10.29245/2689-999X/2019/4.1157]
7. Mustikaningtyas MH, Semedi BP, Kuntaman K. Bacterial and sensitivity pattern of pathogens causing ventilator-associated pneumonia in intensive care unit. Majalah Biomorfologi. 2022;32(1):22-8. [DOI:10.20473/mbiom.v32i1.2022.22-28]
8. Saragih RJ, Amin Z, Sedono R, Pitoyo CW, Rumende CM. Prediktor mortalitas pasien dengan ventilator-associated pneumonia di RS Cipto Mangunkusumo. eJ Kedokteran Indon. 2014;2(2):59894. [DOI:10.23886/ejki.2.4011.]
9. Aditya R, Al-Haq MM. Mortality risk factors and the ventilator-associated pneumonia (VAP) in the ICU of a tertiary hospital in Indonesia. Anaesth Pain Intensive Care. 2024;28(2):206-13.
10. Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther. 2022;7(1):199. [DOI:10.1038/s41392-022-01056-1] [PMID] [PMCID]
11. Velásquez-Garcia L, Mejia-Sanjuanelo A, Viasus D, Carratalà J. Causative Agents of Ventilator-Associated Pneumonia and Resistance to Antibiotics in COVID-19 Patients: A Systematic Review. Biomedicines. 2022;10(6):1226. [DOI:10.3390/biomedicines10061226] [PMID] [PMCID]
12. Hassan ME, Al-Khawaja SA, Saeed NK, Al-Khawaja SA, Al-Awainati M, Radhi SSY, et al. Causative bacteria of ventilator-associated pneumonia in intensive care unit in Bahrain: Prevalence and antibiotics susceptibility pattern. World J Crit Care Med. 2023;12(3):165-75. [DOI:10.5492/wjccm.v12.i3.165] [PMID] [PMCID]
13. Bagheri-Nesami M, Rezai MS, Ahangarkani F, Rafiei A, Nikkhah A, Eslami G, et al. Multidrug and co-resistance patterns of non-fermenting Gram-negative bacilli involved in ventilator-associated pneumonia carrying class 1 integron in the North of Iran. Germs. 2017;7(3):123-31. [DOI:10.18683/germs.2017.1117] [PMID] [PMCID]
14. Zilberberg MD, Shorr AF. Prevalence of multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacteriaceae among specimens from hospitalized patients with pneumonia and bloodstream infections in the United States from 2000 to 2009. J Hosp Med. 2013;8(10):559-63. [DOI:10.1002/jhm.2080] [PMID]
15. Shortridge D, Gales AC, Streit JM, Huband MD, Tsakris A, Jones RN. Geographic and Temporal Patterns of Antimicrobial Resistance in Pseudomonas aeruginosa Over 20 Years From the SENTRY Antimicrobial Surveillance Program, 1997-2016. Open Forum Infect Dis. 2019;6(Suppl 1):S63-S8. [DOI:10.1093/ofid/ofy343] [PMID] [PMCID]
16. Hutauruk SM, Hermani B, Monasari P. Role of chlorhexidine on tracheostomy cannula decontamination in relation to the growth of Biofilm-Forming Bacteria Colony- a randomized controlled trial study. Ann Med Surg (Lond). 2021;67:102491. [DOI:10.1016/j.amsu.2021.102491] [PMID] [PMCID]
17. Humphries RM, Simner PJ. Introduction to Antimicrobial Susceptibility Testing Methods. ClinMicroNow. pp. 1-21. 2020. Hoboken, NJ, United States : John Wiley & Sons, Inc. [DOI:10.1002/9781683670438.cmph0059] [PMCID]
18. Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of Adults With Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61-e111. [DOI:10.1093/cid/ciw353] [PMID] [PMCID]
19. James SL II, Melvin PW, April MB, Shelley C, Sharon KC, Tanis D, et al. Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 33rd ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, USA, 2023. [Cited 2025 Aug 2]; Available from: [https://iacld.com/UpFiles/Documents/672a1c7c-d4ad-404e-b10e-97c19e21cdce.pdf]
20. Kemenkes R. (Ministry of Health of Indonesia). Pedoman Nasional Pelayanan Kedokteran Tata Laksana Pneumonia Pada Dewasa. Jakarta: Kementerian Kesehatan Republik Indonesia; 2023.
21. Ramadhanti S, Radji M, Andalusia R. Qualitative Evaluation of Antibiotics Use for Ventilator Associated Pneummonia (VAP) Patient in ICU Dharmais Cancer Hospital Using Gyssens Method. Indones J Clin Pharm. 2023;12(1):42-9. [DOI:10.15416/ijcp.2023.12.1.42]
22. Ugwuanyi FC, Ajayi A, Ojo DA, Adeleye AI, Smith SI. Evaluation of efflux pump activity and biofilm formation in multidrug resistant clinical isolates of Pseudomonas aeruginosa isolated from a Federal Medical Center in Nigeria. Ann Clin Microbiol Antimicrob. 2021;20(1):11. [DOI:10.1186/s12941-021-00417-y] [PMID] [PMCID]
23. Cho HH, Kwon KC, Kim S, Park Y, Koo SH. Association between Biofilm Formation and Antimicrobial Resistance in Carbapenem-Resistant Pseudomonas Aeruginosa. Ann Clin Lab Sci. 2018;48(3):363-8.
24. Ahmed MN, Porse A, Sommer MOA, Høiby N, Ciofu O. Evolution of Antibiotic Resistance in Biofilm and Planktonic Pseudomonas aeruginosa Populations Exposed to Subinhibitory Levels of Ciprofloxacin. Antimicrob Agents Chemother. 2018;62(8):e00320. [DOI:10.1128/AAC.00320-18] [PMID] [PMCID]
25. Li WR, Zhang ZQ, Liao K, Wang BB, Liu HZ, Shi QS, et al. Pseudomonas aeruginosa heteroresistance to levofloxacin caused by upregulated expression of essential genes for DNA replication and repair. Front Microbiol. 2022;13:1105921. [DOI:10.3389/fmicb.2022.1105921] [PMID] [PMCID]
26. Safarika A, Galani I, Pistiki A, Giamarellos-Bourboulis EJ. Time-kill effect of levofloxacin on multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii: synergism with imipenem and colistin. Eur J Clin Microbiol Infect Dis. 2015;34(2):317-23. [DOI:10.1007/s10096-014-2231-7] [PMID]
27. Macias-Valcayo A, Aguilera-Correa JJ, Broncano A, Parron R, Auñon A, Garcia-Cañete J, et al. Comparative In Vitro Study of Biofilm Formation and Antimicrobial Susceptibility in Gram-Negative Bacilli Isolated from Prosthetic Joint Infections. Microbiol Spectr. 2022;10(4):e0085122. [DOI:10.1128/spectrum.00851-22] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc