سال 17، شماره 4 - ( مرداد - شهریور 1402 )                   جلد 17 شماره 4 صفحات 473-464 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behoftadeh F, Mojtahedi A, Faezi Ghasemi M, Issazadeh K, Golshekan M. Investigation of Immunosensor Modification With Reduced Graphene Oxide with Au Nanoparticles on Glassy Carbon Electrode in Label-free for Escherichia coli Detection. Iran J Med Microbiol 2023; 17 (4) :464-473
URL: http://ijmm.ir/article-1-2093-fa.html
به افتاده فاطمه، مجتهدی علی، فائزی قاسمی محمد، عیسی زاده خسرو، گل شکن مصطفی. بررسی اصلاح حسگر ایمنی با اکسید گرافن کاهش‌یافته با نانوذرات طلا بر روی الکترود کربن شیشه‌ای در بدون برچسب برای تشخیص اشریشیا کلی. مجله میکروب شناسی پزشکی ایران. 1402; 17 (4) :464-473

URL: http://ijmm.ir/article-1-2093-fa.html


1- گروه میکروب شناسی، دانشکده علوم پایه، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران
2- گروه میکروب شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی ایران، تهران، ایران ، mojtahedi99.a@gmail.com
3- مرکز تحقیقات ترومای جاده گیلان، دانشگاه علوم پزشکی گیلان، رشت، ایران
چکیده:   (819 مشاهده)

زمینه و اهداف:  اشریشیا کلی یک شاخص باکتریایی ضروری در کنترل کیفیت دارویی و سایر زمینه های مشابه است. (E.coli) برخی از حسگرهای زیستی برای تشخیص آن بر اساس روش‌های انتقال الکتروشیمیایی طراحی شده‌اند. یک حسگر زیستی با اکسید گرافن کاهش یافته اصلاح شد. روش‌های سنتی زمان‌بر و قیمت بالایی هستند، بنابراین در این مطالعه از حسگر زیستی جدید با اصلاح اکسید گرافن احیا شده (rGO) به عنوان نوعی ترکیب کربن روی الکترود کربن شیشه‌ای (GCE) با تزئینات نانوذرات طلایی (Au NPs) برای E استفاده شد.
مواد و روش کار:  rGo اصلاح‌شده بر روی GCE و روش‌های زمان‌آمپرومتریک و کاهش برای تزئین NPs طلا استفاده شد و با آنتی‌بادی پلی کلونال E. coli و محلول ۰.۵ W/V٪ آلبومین سرم گاوی (BSA) تکمیل شد. مورفولوژی و ساختار NPs rGO و Au در GCE/rGO/Au NPs/ آنتی بادی پلی کلونال E. coli/ بیوسنسور BSA توسط SEM (میکروسکوپ الکترونی روبشی) در طی مراحل اصلاح تأیید شد. تشخیص E. coli در نمونه‌های غیرمشابه با روش‌های ولتامتری موج مربعی (SWV) و ولتامتری چرخه‌ای (CV) انجام شد که در محلول بافر فسفات ۰.۱ مولار (PBS) (pH ۷.۴) مخلوط با ۰.۵ میلی‌مولار استامینوفن قرار گرفتند. در مقایسه با بیوسنسور، روش کلاسیک تشخیص با رقت‌های سریال E. coli ATCC ۸۷۳۹ (۱×۱۰۱–۱×۱۰۸ CFU/ml) انجام شد که روی محیط کشت کشت داده شد.
یافته ها:  علی‌رغم دو روش مورد استفاده برای تثبیت نانوذرات طلا، تصاویر میکروسکوپ الکترونی روبشی (SEM) نشان داد که اختلاف فعلی به دلیل ذرات طلا افزایش نمی‌یابد. اصلاح آن تغییر قابل توجهی در جریان نداشت و آزمایش موفقی برای تشخیص اشریشیا کولی نبود.
نتیجه‌گیری:  در مقایسه با روش پلیت، بیوسنسور نمی‌تواند جایگزین روش‌های مرسوم برای تشخیص E. coli شود.

متن کامل [PDF 1035 kb]   (254 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: نانو بیوتکنولوژی در پزشکی
دریافت: 1402/2/4 | پذیرش: 1402/5/1 | انتشار الکترونیک: 1402/7/5

فهرست منابع
1. Ahmed A, Rushworth JV, Hirst NA, Millner PA. Biosensors for whole-cell bacterial detection. Clini Microbiol Rev. 2014;27(3):631-46. [DOI:10.1128/CMR.00120-13] [PMID] [PMCID]
2. Yang L, Bashir R. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol Adv. 2008;26(2):135-50. [DOI:10.1016/j.biotechadv.2007.10.003] [PMID]
3. Nurliyana M, Sahdan M, Wibowo K, Muslihati A, Saim H, Ahmad S, et al., editors. The detection method of Escherichia coli in water resources: A review. Journal of Physics: Conference Series; 2018: IOP Publishing. [DOI:10.1088/1742-6596/995/1/012065]
4. Pebdeni AB, Roshani A, Mirsadoughi E, Behzadifar S, Hosseini M. Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water. Food Control. 2022:108822. [DOI:10.1016/j.foodcont.2022.108822]
5. Convention USP. USP 44 NF 39: United States Pharmacopeia [and] National Formulary. Reissue. Supplement 2. a: United States Pharmacopeial Convention; 2021.
6. Rawlins PsM. British Pharmacopoeia London E14 4PU: Medical and Healthcare Products Regulatory Agency; 2020.
7. Thakur B, Zhou G, Chang J, Pu H, Jin B, Sui X, et al. Rapid detection of single E. coli bacteria using a graphene-based field-effect transistor device. Biosens Bioelectron. 2018;110:16-22. [DOI:10.1016/j.bios.2018.03.014] [PMID]
8. Waswa J, Irudayaraj J, DebRoy C. Direct detection of E. coli O157: H7 in selected food systems by a surface plasmon resonance biosensor. LWT-Food Sci Tech. 2007;40(2):187-92. [DOI:10.1016/j.lwt.2005.11.001]
9. Hashemi E, Forouzandeh M. Designing a new biosensor "DNA ELISA" to detect Escherichia coli using genomic DNA and comparison of this method to PCR-ELISA. J Enzyme Inhib Med Chem. 2018;33(1):722-5. [DOI:10.1080/14756366.2018.1450748] [PMID] [PMCID]
10. Henriques J, Sousa J, Veiga F, Cardoso C, Vitorino C. Process analytical technologies and injectable drug products: Is there a future?. Int J Pharm. 2019;554:21-35. [DOI:10.1016/j.ijpharm.2018.10.070] [PMID]
11. García-Aljaro C, Cella LN, Shirale DJ, Park M, Muñoz FJ, Yates MV, et al. Carbon nanotubes-based chemiresistive biosensors for detection of microorganisms. Biosens Bioelectron. 2010;26(4): 1437-41. [DOI:10.1016/j.bios.2010.07.077] [PMID]
12. Geleta GS, Zhao Z, Wang Z. Electrochemical biosensors for detecting microbial toxins by graphene-based nanocomposites. J Anal Test. 2018;2(1):20-5. [DOI:10.1007/s41664-018-0051-y]
13. Assari P, Rafati AA, Feizollahi A, Asadpour Joghani R. An electrochemical immunosensor for the prostate specific antigen based on the use of reduced graphene oxide decorated with gold nanoparticles. Microchimica Acta. 2019;186(7):1-9. [DOI:10.1007/s00604-019-3565-8] [PMID]
14. Salmani H, Azarnezhad A, Fayazi MR, Hosseini A. Pathotypic and phylogenetic study of diarrheagenic Escherichia coli and uropathogenic E. coli using multiplex polymerase chain reaction. Jundishapur J Microbiol. 2016;9(2):e28331. [DOI:10.5812/jjm.28331] [PMID] [PMCID]
15. Sandle T. Towards a rapid sterility test. J Microb Biochem Technol. 2015;7(4):216-7
16. Yang H, Qin J, Zhang M, Shen H, Feng J, Hao H. Label-free Lectin Impedimetric Biosensor Based on a Polyaniline/Graphene Nanocomposite for the Detection of Escherichia coli. Int J Electrochem Sci. 2020;15:8913-27. [DOI:10.20964/2020.09.34]
17. Sandle T. Approaching the Selection of Rapid Microbiological Methods. J Valid Technol. 2014;20(2):1-10.
18. Meraat R, Issazadeh K, Abdolahzadeh Ziabari A, Faezi Ghasemi M. Rapid Detection of Escherichia coli by β-Galactosidase Biosensor Based on ZnO NPs and MWCNTs: A Comparative Study. Curr Microbiol. 2020;77(10):2633-41. [DOI:10.1007/s00284-020-02040-0] [PMID]
19. Li C, Sun F. Graphene-assisted sensor for rapid detection of antibiotic resistance in Escherichia coli. Front Chem. 2021;9:696906. [DOI:10.3389/fchem.2021.696906] [PMID] [PMCID]
20. Pourmadadi M, Shayeh JS, Omidi M, Yazdian F, Alebouyeh M, Tayebi L. A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Microchim Acta. 2019;186(12):1-8. [DOI:10.1007/s00604-019-3957-9] [PMID]
21. Barthasarathy PR, Ahmed NA, Salim WWAW. Reduced Graphene Oxide on Screen-Printed Carbon Electrodes as Biosensor for Escherichia coli O157: H7 Detection. Proceedings. 2020;60(1):13. [DOI:10.3390/IECB2020-07056]
22. Yang T, Yang X, Guo X, Fu S, Zheng J, Chen S, et al. A novel fluorometric aptasensor based on carbon nanocomposite for sensitive detection of Escherichia coli O157: H7 in milk. J Dairy Sci. 2020;103(9):7879-89. [DOI:10.3168/jds.2020-18344] [PMID]
23. Nakama K, Sedki M, Mulchandani A. Label-free chemiresistor biosensor based on reduced graphene oxide and M13 bacteriophage for detection of coliforms. Anal Chim Acta. 2021;1150:338232. [DOI:10.1016/j.aca.2021.338232] [PMID]
24. Qaanei M, Taheri RA, Eskandari K. Electrochemical aptasensor for Escherichia coli O157: H7 bacteria detection using a nanocomposite of reduced graphene oxide, gold nanoparticles and polyvinyl alcohol. Analytical Methods. 2021;13(27):3101-9. [DOI:10.1039/D1AY00563D] [PMID]
25. Silva M, Cesarino I. Evaluation of a nanocomposite based on reduced graphene oxide and gold nanoparticles as an electrochemical platform for detection of sulfamethazine. J Compos Sci. 2019;3(2):59. [DOI:10.3390/jcs3020059]
26. Guo S, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta. 2007;598(2):181-92. [DOI:10.1016/j.aca.2007.07.054] [PMID]
27. Hassan H, Sharma P, Hasan MR, Singh S, Thakur D, Narang J. Gold nanomaterials-The golden approach from synthesis to applications. Mater Sci Energy Technol. 2022;(5):375-90. [DOI:10.1016/j.mset.2022.09.004]
28. Güner A, Çevik E, Şenel M, Alpsoy L. An electrochemical immunosensor for sensitive detection of Escherichia coli O157: H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem. 2017;229:358-65. [DOI:10.1016/j.foodchem.2017.02.083] [PMID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله میکروب شناسی پزشکی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق   ناشر: موسسه فرنام

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb Publishr: Farname Inc.