year 1, Issue 1 (Spring 2007)                   Iran J Med Microbiol 2007, 1(1): 61-66 | Back to browse issues page

XML Persian Abstract Print


1- Department of Medical Microbiology, Faculty ofMedicine, and Molecular Biology Research Center, Baqiyatallah (a.s.) University of Medical Sciences
2- Molecular Biology Research Center, Baqiyatallah (a.s.) University of Medical Sciences
3- Department of Medical Microbiology, Faculty of Medicine, and Health Research Center, Baqiyatallah (a.s.) University of Medical Sciences
Abstract:   (18206 Views)
Background and Objectives: Acute bacterial meningitis has remained an important cause of death and neurological damages among survivors. Rapid diagnosis of bacterial meningitis is crucial for the early targeting of antimicrobial therapy. The aim of this study was to develop and appply a PCR assay for rapid diagnosis of meningitidis and to compare the results with those obtained by conventional bacteriology.
Material and methods: We assessed 150 cerebrospinal fluid (CSF) specimens from suspected patients by PCR targeting 16S rRNAgene with specefic primers for Neisseria meningitidis, Sterptococcus pneumonia and Heamophilus influenza. All speciemns were also examined by conventional bacteriology.
Results:The rapidity of diagnosis increased when bacteriological methods were combined with PCR. Of 150 speciemens tested, 10 were positive for Neisseria meningitidis in PCR. Direct microscopy and bacterial culture found 5 and 8 cases infected with this organism respectively.
Conclusion: PCR was more sensitive than direct microscopy and culture for detection of Neisseria meningitidis. However, direct microscopy may provide evidences for the quality of specimens and presence of other organisms in the samples. Wet- mount direct microscopy showed morphology and arrangements of the observed organisms that may be helpful in presumptive identification of certain bacteria such as gram negative bacilli and cocci.. Moreover, the observed organisms may be useful in correct selection of culture media in the laboratory and prescription of appropriate therapy by physicians in a quickest time.
Full-Text [PDF 172 kb]   (2967 Downloads)    
Type of Study: Original Research Article | Subject: Molecular Microbiology
Received: 2013/11/10 | Accepted: 2013/11/10 | ePublished: 2013/11/10

References
1. Vizmanos B, Cascales AI, Rodríguez‐Martín M, Salmerón D, Morales E, Aragón‐Alonso A, et al. Lifestyle mediators of associations among siestas, obesity, and metabolic health. Obesity. 2023;31(5):1227-39. [DOI:10.1002/oby.23765] [PMID]
2. Karra P, Winn M, Pauleck S, Bulsiewicz‐Jacobsen A, Peterson L, Coletta A, et al. Metabolic dysfunction and obesity‐related cancer: beyond obesity and metabolic syndrome. Obesity. 2022;30(7):1323-34. [DOI:10.1002/oby.23444] [PMID] []
3. Le MH, Yeo YH, Li X, Li J, Zou B, Wu Y, et al. 2019 Global NAFLD prevalence: a systematic review and meta-analysis. Clinical Gastroenterology and Hepatology. 2022;20(12):2809-17. e28. [DOI:10.1016/j.cgh.2021.12.002] [PMID]
4. Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. The lancet gastroenterology & hepatology. 2022. [DOI:10.1016/S2468-1253(22)00165-0] [PMID]
5. Francque SM, Dirinck E. NAFLD prevalence and severity in overweight and obese populations. The Lancet Gastroenterology & Hepatology. 2023;8(1):2-3. [DOI:10.1016/S2468-1253(22)00375-2] [PMID]
6. Wang X-X, Jin R, Li X-H, Yang Q, Teng X, Liu F-F, et al. Collagen co-localized with macrovesicular steatosis better differentiates fibrosis progression in non-alcoholic fatty liver disease mouse models. Frontiers in Medicine. 2023;10:1172058. [DOI:10.3389/fmed.2023.1172058] [PMID] []
7. Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: a systematic review and meta-analysis. Journal of hepatology. 2019;71(4):793-801. [DOI:10.1016/j.jhep.2019.06.021] [PMID]
8. Harrison SA, Allen AM, Dubourg J, Noureddin M, Alkhouri N. Challenges and opportunities in NASH drug development. Nature Medicine. 2023;29(3):562-73. [DOI:10.1038/s41591-023-02242-6] [PMID]
9. Zhang X, Wu M, Liu Z, Yuan H, Wu X, Shi T, et al. Increasing prevalence of NAFLD/NASH among children, adolescents and young adults from 1990 to 2017: a population-based observational study. BMJ open. 2021;11(5):e042843. [DOI:10.1136/bmjopen-2020-042843] [PMID] []
10. Horn CL, Morales AL, Savard C, Farrell GC, Ioannou GN. Role of cholesterol‐associated steatohepatitis in the development of NASH. Hepatology communications. 2022;6(1):12-35. [DOI:10.1002/hep4.1801] [PMID] []
11. Gabbia D, Cannella L, De Martin S. The role of oxidative stress in NAFLD-NASH-HCC transition-Focus on NADPH oxidases. Biomedicines. 2021;9(6):687. [DOI:10.3390/biomedicines9060687] [PMID] []
12. Velliou R-I, Legaki A-I, Nikolakopoulou P, Vlachogiannis NI, Chatzigeorgiou A. Liver endothelial cells in NAFLD and transition to NASH and HCC. Cellular and Molecular Life Sciences. 2023;80(11):314. [DOI:10.1007/s00018-023-04966-7] [PMID]
13. Dong J, Viswanathan S, Adami E, Singh BK, Chothani SP, Ng B, et al. Hepatocyte-specific IL11 cis-signaling drives lipotoxicity and underlies the transition from NAFLD to NASH. Nature communications. 2021;12(1):66. [DOI:10.1038/s41467-020-20303-z] [PMID] []
14. Peiseler M, Tacke F. Inflammatory mechanisms underlying nonalcoholic steatohepatitis and the transition to hepatocellular carcinoma. Cancers. 2021;13(4):730. [DOI:10.3390/cancers13040730] [PMID] []
15. Weiskirchen R, Meurer SK, Liedtke C, Huber M. Mast cells in liver fibrogenesis. Cells. 2019;8(11):1429. [DOI:10.3390/cells8111429] [PMID] []
16. Pham L, Kennedy L, Baiocchi L, Meadows V, Ekser B, Kundu D, et al. Mast cells in liver disease progression: An update on current studies and implications. Hepatology. 2022;75(1):213-8. [DOI:10.1002/hep.32121] [PMID] []
17. Bernard JK, Marakovits C, Smith LG, Francis H, editors. Mast Cell and Innate Immune Cell Communication in Cholestatic Liver Disease. Seminars in liver disease; 2023: Thieme Medical Publishers, Inc. 333 Seventh Avenue, 18th Floor, New York, NY …. [DOI:10.1055/a-2104-9034] [PMID]
18. Hammerich L, Tacke F. Hepatic inflammatory responses in liver fibrosis. Nature Reviews Gastroenterology & Hepatology. 2023;20(10):633-46. [DOI:10.1038/s41575-023-00807-x] [PMID]
19. Meligi NM, Ismail SA, Tawfik NS. Protective effects of honey and bee venom against lipopolysaccharide and carbon tetrachloride-induced hepatoxicity and lipid peroxidation in rats. Toxicology Research. 2020;9(5):693-705. [DOI:10.1093/toxres/tfaa077] [PMID] []
20. Kim Y-Y, Hur G, Lee SW, Lee S-J, Lee S, Kim S-H, et al. AGK2 ameliorates mast cell-mediated allergic airway inflammation and fibrosis by inhibiting FcεRI/TGF-β signaling pathway. Pharmacological Research. 2020;159:105027. [DOI:10.1016/j.phrs.2020.105027] [PMID]
21. Lewandowska E, Wosiak A, Zieliński A, Brzeziński P, Strzelczyk J, Szymański D, et al. Role of mast cells in the pathogenesis of liver fibrosis in nonalcoholic fatty liver disease. Polish Journal of Pathology. 2020;71(1):38-45. [DOI:10.5114/pjp.2020.95414] [PMID]
22. Aller M-Á, Martínez V, Arias A, Nava M-P, Cuervas-Mons V, Vergara P, et al. Mast cell-mediated splanchnic cholestatic inflammation. Clinics and Research in Hepatology and Gastroenterology. 2019;43(5):561-74. [DOI:10.1016/j.clinre.2019.02.001] [PMID]
23. Aller M-A, Blanco-Rivero J, Arias N, Santamaria L, Arias J. The lymphatic headmaster of the mast cell-related splanchnic inflammation in portal hypertension. Cells. 2019;8(7):658. [DOI:10.3390/cells8070658] [PMID] []
24. Nagata K, Nishiyama C. IL-10 in mast cell-mediated immune responses: anti-inflammatory and proinflammatory roles. International journal of molecular sciences. 2021;22(9):4972. [DOI:10.3390/ijms22094972] [PMID] []
25. Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, et al. Mast cell-mediated immune regulation in health and disease. Frontiers in Medicine. 2023;10. [DOI:10.3389/fmed.2023.1213320] [PMID] []
26. Meadows V, Kennedy L, Hargrove L, Demieville J, Meng F, Virani S, et al. Downregulation of hepatic stem cell factor by Vivo-Morpholino treatment inhibits mast cell migration and decreases biliary damage/senescence and liver fibrosis in Mdr2−/− mice. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2019;1865(12):165557. [DOI:10.1016/j.bbadis.2019.165557] [PMID] []
27. Lombardo J, Broadwater D, Collins R, Cebe K, Brady R, Harrison S. Hepatic mast cell concentration directly correlates to stage of fibrosis in NASH. Human Pathology. 2019;86:129-35. [DOI:10.1016/j.humpath.2018.11.029] [PMID]
28. Takahashi Y, Dungubat E, Kusano H, Fukusato T. Artificial intelligence and deep learning: New tools for histopathological diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Computational and Structural Biotechnology Journal. 2023. [DOI:10.1016/j.csbj.2023.03.048] [PMID] []
29. Huang S, Wu H, Luo F, Zhang B, Li T, Yang Z, et al. Exploring the role of mast cells in the progression of liver disease. Frontiers in Physiology. 2022:1714. [DOI:10.3389/fphys.2022.964887] [PMID] []
30. Armbrust T, Batusic D, Ringe B, Ramadori G. Mast cells distribution in human liver disease and experimental rat liver fibrosis. Indications for mast cell participation in development of liver fibrosis. Journal of hepatology. 1997;26(5):1042-54. [DOI:10.1016/S0168-8278(97)80113-4] [PMID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.