سال 18، شماره 5 - ( مهر - آبان 1403 )                   جلد 18 شماره 5 صفحات 318-308 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pandey P, Agarwal P, Biswas A, Gupta R M, Pandey A K, Das A et al . Understanding the Effects of Respiratory Infections on children from Demographic Factors, Seasonal Patterns, and Post-COVID Pandemic Dynamics. Iran J Med Microbiol 2024; 18 (5) :308-318
URL: http://ijmm.ir/article-1-2408-fa.html
Understanding the Effects of Respiratory Infections on children from Demographic Factors, Seasonal Patterns, and Post-COVID Pandemic Dynamics. مجله میکروب شناسی پزشکی ایران. 1403; 18 (5) :308-318

URL: http://ijmm.ir/article-1-2408-fa.html


چکیده:   (479 مشاهده)

Background and Aim: Children under five years pose an increased risk of respiratory illnesses all over the world. In the light of the COVID-19 pandemic, this study sought to ascertain the seasonal patterns, demographic relationships, and prevalence of respiratory infections in this susceptible group.
Materials and Methods: In this cross-sectional study 927 samples were collected from children younger than five years old with respiratory illnesses from the North Indian Hospital between February 2022 and December 2023. The nasopharyngeal (NP) and oropharyngeal (OP) Swab samples were exposed to PCR analysis. Clinical, environmental, and demographic data were collected through interviews and medical records. GraphPad Prism and the chi-square test were used for the comparisons and statistical analysis.
Results: The respiratory samples included 234 mono-infections and 27 co-infections, and males made up a higher proportion of cases than females. Lack of exclusive breastfeeding was linked to 71 mono-infections and 9 co-infections, whereas low birth weight was linked to 13 mono-infections and 21 co-infections. Higher infection rates were associated with environmental factors, including crowded houses and exposure to indoor air pollution (P=0.06; P=0.003). Respiratory syncytial virus (RSV) was the most prevalent among the pathogens. The remaining 34 cases were co-infections. The most common combinations were RSV with rhinovirus, and rhinovirus with Haemophilus influenzae.
Conclusion: Understanding the effects of respiratory illnesses on children after a pandemic necessitates considering a number of risk variables. These results highlight the significance of addressing socio-environmental parameters and implementing the comprehensive disease prevention and management strategies for the respiratory health of children.

متن کامل [PDF 820 kb]   (164 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: ویروس شناسی پزشکی
دریافت: 1403/5/3 | پذیرش: 1403/8/21 | انتشار الکترونیک: 1403/9/10

فهرست منابع
1. Liu W, Huang Z, Xiao J, Wu Y, Xia N, Yuan Q. Evolution of the SARS-CoV-2 Omicron Variants: Genetic Impact on Viral Fitness. Viruses. 2024;16(2):184. [DOI:10.3390/v16020184] [PMID] [PMCID]
2. Almeida T, Guimarães JT, Rebelo S. Epidemiological Changes in Respiratory Viral Infections in Children: The Influence of the COVID-19 Pandemic. Viruses. 2023;15(9):1880. [DOI:10.3390/v15091880] [PMID] [PMCID]
3. World Health Organization (WHO). Manual for the laboratory diagnosis and virological surveillance of influenza. 2011 [updated January 2011]. Available from: [https://www.who.int/publications/i/item/manual-for-the-laboratory-diagnosis-and-virological-surveill]
4. Kang M, Sarkar S, Angurana SK, Singh P, Rana M, Bora I, et al. Paradigm shift of respiratory viruses causing lower respiratory tract infection in children during COVID-19 pandemic in India. J Infect Dev Ctries. 2023;17(7):961-70. [DOI:10.3855/jidc.17727] [PMID]
5. Potdar V, Vijay N, Mukhopadhyay L, Aggarwal N, Bhardwaj SD, Choudhary ML, et al. Pan-India influenza-like illness (ILI) and Severe acute respiratory infection (SARI) surveillance: epidemiological, clinical and genomic analysis. Front Public Health. 2023;11:1218292. [DOI:10.3389/fpubh.2023.1218292] [PMID] [PMCID]
6. Chadha M, Prabhakaran AO, Choudhary ML, Biswas D, Koul P, Kaveri K, et al. Multisite surveillance for influenza and other respiratory viruses in India: 2016–2018. PLOS Global Public Health. 2022;2(11):e0001001. [DOI:10.1371/journal.pgph.0001001] [PMID] [PMCID]
7. McClelland EE, Smith JM. Gender specific differences in the immune response to infection. Arch Immunol Ther Exp. 2011;59(3):203-13. [DOI:10.1007/s00005-011-0124-3] [PMID]
8. Juliana AE, Tang MJ, Kemps L, Noort AC, Hermelijn S, Plötz FB, et al. Viral causes of severe acute respiratory infection in hospitalized children and association with outcomes: A two-year prospective surveillance study in Suriname. PLoS One. 2021;16(2):e0247000. [DOI:10.1371/journal.pone.0247000] [PMID] [PMCID]
9. Zhao Y, Lu R, Shen J, Xie Z, Liu G, Tan W. Comparison of viral and epidemiological profiles of hospitalized children with severe acute respiratory infection in Beijing and Shanghai, China. BMC Infect Dis. 2019;19(1):729. [DOI:10.1186/s12879-019-4385-5] [PMID] [PMCID]
10. Chorazy ML, Lebeck MG, McCarthy TA, Richter SS, Torner JC, Gray GC. Polymicrobial acute respiratory infections in a hospital-based pediatric population. Pediatr Infect Dis J. 2013;32(5):460-6. [DOI:10.1097/INF.0b013e31828683ce] [PMID] [PMCID]
11. Marcone DN, Ellis A, Videla C, Ekstrom J, Ricarte C, Carballal G, et al. Viral etiology of acute respiratory infections in hospitalized and outpatient children in Buenos Aires, Argentina. Pediatr Infect Dis J. 2013;32(3):e105-10. [DOI:10.1097/INF.0b013e31827cd06f] [PMID]
12. Martínez-Roig A, Salvadó M, Caballero-Rabasco MA, Sánchez-Buenavida A, López-Segura N, Bonet-Alcaina M. Viral coinfection in childhood respiratory tract infections. Arch Bronconeumol. 2015;51(1):5-9. [DOI:10.1016/j.arbr.2014.11.020] [PMID] [PMCID]
13. Peci A, Winter AL, Li Y, Gnaneshan S, Liu J, Mubareka S, et al. Effects of absolute humidity, relative humidity, temperature, and wind speed on influenza activity in Toronto, Ontario, Canada. Appl Environ Microbiol. 2019;85(6):e02426-18. [DOI:10.1128/AEM.02426-18] [PMID] [PMCID]
14. Midgley CM, Haynes AK, Baumgardner JL, Chommanard C, Demas SW, Prill MM, et al. Determining the seasonality of respiratory syncytial virus in the United States: the impact of increased molecular testing. J Infect Dis. 2017;216(3):345-55. [DOI:10.1093/infdis/jix275] [PMID] [PMCID]
15. Killerby ME, Biggs HM, Haynes A, Dahl RM, Mustaquim D, Gerber SI, et al. Human coronavirus circulation in the United States 2014–2017. J Clin Virol. 2018;101:52-6. [DOI:10.1016/j.jcv.2018.01.019] [PMID] [PMCID]
16. Monto AS. Epidemiology of viral respiratory infections. Am J Med. 2002;112(Suppl 6A):4S-12S. [DOI:10.1016/S0002-9343(01)01058-0] [PMID]
17. Landes MB, Neil RB, McCool SS, Mason BP, Woron AM, Garman RL, et al. The frequency and seasonality of influenza and other respiratory viruses in T ennessee: two influenza seasons of surveillance data, 2010–2012. Influenza Other Respir Viruses. 2013;7(6):1122-7. [DOI:10.1111/irv.12145] [PMID] [PMCID]
18. Morikawa S, Kohdera U, Hosaka T, Ishii K, Akagawa S, Hiroi S, et al. Seasonal variations of respiratory viruses and etiology of human rhinovirus infection in children. J Clin Virol. 2015;73:14-9. [DOI:10.1016/j.jcv.2015.10.001] [PMID] [PMCID]
19. Bastien N, Brandt K, Dust K, Ward D, Li Y. Human Bocavirus infection, Canada. Emerg Infect Dis. 2006;12:848-50. [DOI:10.3201/eid1205.051424] [PMID] [PMCID]
20. Haynes AK, Fowlkes AL, Schneider E, Mutuc JD, Armstrong GL, Gerber SI. Human Metapneumovirus Circulation in the United States, 2008 to 2014. Pediatrics. 2016;137(5):e20152927. [DOI:10.1542/peds.2015-2927] [PMID]
21. Abedi GR, Watson JT, Nix WA, Oberste MS, Gerber SI. Enterovirus and Parechovirus Surveillance-United States, 2014–2016. MMWR Morb Mortal Wkly Rep. 2018;67:515-8. [DOI:10.15585/mmwr.mm6718a2] [PMID] [PMCID]
22. Lee WM, Lemanske Jr RF, Evans MD, Vang F, Pappas T, Gangnon R, et al. Human rhinovirus species and season of infection determine illness severity. Am J Respir Crit Care Med. 2012;186(9):886-91. [DOI:10.1164/rccm.201202-0330OC] [PMID] [PMCID]
23. Monto AS. The seasonality of rhinovirus infections and its implications for clinical recognition. Clin Ther. 2002;24(12):1987-97. [DOI:10.1016/S0149-2918(02)80093-5] [PMID]
24. Falsey AR, Walsh EE. Respiratory syncytial virus infection in adults. Clin Microbiol Rev. 2000;13(3):371-84. [DOI:10.1128/CMR.13.3.371] [PMID]
25. Atmar RL, Piedra PA, Patel SM, Greenberg SB, Couch RB, Glezen WP. Picornavirus, the most common respiratory virus causing infection among patients of all ages hospitalized with acute respiratory illness. J Clin Microbiol. 2012;50(2):506-8. [DOI:10.1128/JCM.05999-11] [PMID] [PMCID]
26. Li Y, Lei J, Ren Z, Ma X. Case Report: Metagenomic next-generation sequencing assists in dynamic pathogen monitoring: powerful tool for progressing severe pneumonia. Front Cell Infect Microbiol. 2023;13:1230813. [DOI:10.3389/fcimb.2023.1230813] [PMID] [PMCID]
27. Suminda GGD, Bhandari S, Won Y, Goutam U, Kanth Pulicherla K, Son YO, et al. High-throughput sequencing technologies in the detection of livestock pathogens, diagnosis, and zoonotic surveillance. Comput Struct Biotechnol J. 2022;20:5378-92. [DOI:10.1016/j.csbj.2022.09.028.] [PMID] [PMCID]
28. Bardsley M, Morbey RA, Hughes HE, Beck CR, Watson CH, Zhao H, et al. Epidemiology of respiratory syncytial virus in children younger than 5 years in England during the COVID-19 pandemic, measured by laboratory, clinical, and syndromic surveillance: a retrospective observational study. Lancet Infect Dis. 2023;23(1):56-66. [DOI:10.1016/S1473-3099(22)00525-4] [PMID]
29. World Health Organization (WHO). Influenza Surveillance Outputs [Internet]. Accessed on 22 Nov. 2024. Available from: [https://www.who.int/teams/global-influenza-programme/surveillance-and-monitoring/influenza-surveilla]
30. Chow EJ, Uyeki TM, Chu HY. The effects of the COVID-19 pandemic on community respiratory virus activity. Nat Rev Microbiol. 2023;21(3):195-210. [DOI:10.1038/s41579-022-00807-9] [PMID] [PMCID]
31. Mir AA, Imtiyaz A, Fazili A, Iqbal J, Jabeen R, Salathia A. Prevalence and risk factor analysis of acute respiratory tract infections in rural areas of Kashmir valley under 5 years of age. Int J Med Public Health. 2012;2(3):47-52. [DOI:10.5530/ijmedph.2.3.10]
32. Naik JD, Jain SR, Mathurkar MP, Suryawanshi SP, Kamble SV, Babar SD. Study of clinical profile and certain modifiable risk factors associated with acute respiratory infection cases admitted in a tertiary care hospital. Int J Contemp Pediatr. 2016;3(1):129-33. [DOI:10.18203/2349-3291.ijcp20160144] [PMID]
33. Goel K, Ahmad S, Agarwal G, Goel P, Kumar V. A cross-sectional study on prevalence of acute respiratory infections (ARI) in under-five children of Meerut District, India. J Commun Med Health Educ. 2012;2(9):1-4. [DOI:10.4172/2161-0711.1000176]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله میکروب شناسی پزشکی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق   ناشر: موسسه فرنام

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb Publishr: Farname Inc.