سال 18، شماره 3 - ( خرداد - تیر 1403 )                   جلد 18 شماره 3 صفحات 162-148 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Behboudi E, Charostad J, Nakhaie M, Khajouei A, Ghelmani Y. JNK Signaling Pathways and Oncoviruses. Iran J Med Microbiol 2024; 18 (3) :148-162
URL: http://ijmm.ir/article-1-2314-fa.html
بهبودی عماد، چاراستاد جواد، نخغی محسن، خواجویی آرمان، غلمانی یاسر. مسیرهای سیگنال دهی JNK و Oncoviruses. مجله میکروب شناسی پزشکی ایران. 1403; 18 (3) :148-162

URL: http://ijmm.ir/article-1-2314-fa.html


1- گروه علوم پایه، دانشگاه علوم پزشکی خوی، خوی، ایران
2- گروه میکروبیولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران
3- مرکز تحقیقات گوارش و کبد، پژوهشکده علوم پایه و بالینی فیزیولوژی، دانشگاه علوم پزشکی کرمان، کرمان، ایران
4- دانشکده پزشکی، دانشگاه علوم پزشکی کرمان، کرمان، ایران
5- گروه داخلی، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران ، yaser.ghelmani@gmail.com
چکیده:   (512 مشاهده)

Oncoviruses utilize the host cell signaling pathways. The role of the host cellular kinases as the main signaling factors in the viral replication and assembly has been reported before. The c-Jun NH2-terminal kinases (JNKs) as members of the mitogen-activated protein kinase (MAPK) family are stress-activated protein kinases that can be triggered by radiation, growth factors, cell stress, and inflammatory cytokines. They are involved in the cell proliferation, migration/ invasion, various forms of cell deaths including apoptosis, autophagy, and necroptosis, and also cell survival-mediated cancer therapeutic resistance. The JNK pathway plays a key role in oncoviruses replication process. It can be triggered through viral infection and is involved in the replication of some viruses including herpes viruses and rotaviruses. It plays a key role in oncogenesis mechanism of oncoviruses by influencing both oncogenic events and tumor suppressive mechanisms. The present study aimed to highlight and increase our understanding regarding the effects of JNK pathway on the oncogenesis mechanism of oncoviruses including HBV, HCV, HTLV, HPV, KSHV, and EBV.

متن کامل [PDF 742 kb]   (59 دریافت)    
نوع مطالعه: مقاله مروری | موضوع مقاله: ویروس شناسی پزشکی
دریافت: 1402/9/20 | پذیرش: 1402/11/9 | انتشار الکترونیک: 1403/5/28

فهرست منابع
1. Visvader JEJN. Cells of origin in cancer. Nature. 2011;469(7330):314-22. [DOI:10.1038/nature09781] [PMID]
2. Rahaus M, Desloges N, Wolff MHJJoGV. Replication of varicella-zoster virus is influenced by the levels of JNK/SAPK and p38/MAPK activation. J Gen Virol. 2004;85(12):3529-40. [DOI:10.1099/vir.0.80347-0] [PMID]
3. Lupberger J, Zeisel MB, Xiao F, Thumann C, Fofana I, Zona L, et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med. 2011;17(5):589-95. [DOI:10.1038/nm.2341] [PMID] [PMCID]
4. Deng Y, Ren X, Yang L, Lin Y, Wu XJC. A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell. 2003;115(1):61-70. [DOI:10.1016/S0092-8674(03)00757-8] [PMID]
5. Teraishi F, Zhang L, Guo W, Dong F, Davis JJ, Lin A, et al. Activation of c-Jun NH2-terminal kinase is required for gemcitabine's cytotoxic effect in human lung cancer H1299 cells. FEBS Lett. 2005;579(29):6681-7. [DOI:10.1016/j.febslet.2005.10.064] [PMID] [PMCID]
6. Teraishi F, Wu S, Sasaki J, Zhang L, Davis J, Guo W, et al. JNK1-dependent antimitotic activity of thiazolidin compounds in human non-small-cell lung and colon cancer cells. Cell Mol Life Sci. 2005;62(19-20):2382-9. [DOI:10.1007/s00018-005-5365-z] [PMID] [PMCID]
7. Holloway G, Coulson BSJJov. Rotavirus activates JNK and p38 signaling pathways in intestinal cells, leading to AP-1-driven transcriptional responses and enhanced virus replication. J Virol. 2006;80(21):10624-33. [DOI:10.1128/JVI.00390-06] [PMID] [PMCID]
8. Supekova L, Supek F, Lee J, Chen S, Gray N, Pezacki JP, et al. Identification of human kinases involved in hepatitis C virus replication by small interference RNA library screening. J Biol Chem. 2008;283(1):29-36. [DOI:10.1074/jbc.M703988200] [PMID]
9. Bogoyevitch MA, Kobe BJM, Reviews MB. Uses for JNK: the many and varied substrates of the c-Jun N-terminal kinases. Microbiol Mol Biol Rev. 2006;70(4):1061-95. [DOI:10.1128/MMBR.00025-06] [PMID] [PMCID]
10. Cho Y-L, Tan HWS, Saquib Q, Ren Y, Ahmad J, Wahab R, et al. Dual role of oxidative stress-JNK activation in autophagy and apoptosis induced by nickel oxide nanoparticles in human cancer cells. Free Radic Biol Med. 2020;153:173-86. [DOI:10.1016/j.freeradbiomed.2020.03.027] [PMID]
11. Chen F, Beezhold K, Castranova V. JNK1, a potential therapeutic target for hepatocellular carcinoma. Biochim Biophys Acta. 2009;1796(2):242-51. [DOI:10.1016/j.bbcan.2009.06.005] [PMID]
12. Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103(2):239-52. [DOI:10.1016/S0092-8674(00)00116-1] [PMID]
13. Seledtsov VI, Malashchenko VV, Meniailo ME, Atochin DN, Seledtsova GV, Schepetkin IA. Inhibitory effect of IQ-1S, a selective c-Jun N-terminal kinase (JNK) inhibitor, on phenotypical and cytokine-producing characteristics in human macrophages and T-cells. Eur J Pharmacol. 2020;878:173116. [DOI:10.1016/j.ejphar.2020.173116] [PMID]
14. Chang L, Karin MJN. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37-40. [DOI:10.1038/35065000] [PMID]
15. Voncken JW, Niessen H, Neufeld B, Rennefahrt U, Dahlmans V, Kubben N, et al. MAPKAP kinase 3pK phosphorylates and regulates chromatin association of the polycomb group protein Bmi1. J Biol Chem. 2005;280(7):5178-87. [DOI:10.1074/jbc.M407155200] [PMID]
16. Shao Z, Bhattacharya K, Hsich E, Park L, Walters B, Germann U, et al. c-Jun N-terminal kinases mediate reactivation of Akt and cardiomyocyte survival after hypoxic injury in vitro and in vivo. Circ Res. 2006;98(1):111-8. [DOI:10.1161/01.RES.0000197781.20524.b9] [PMID]
17. Kim JH, Lee SC, Ro J, Kang HS, Kim HS, Yoon S. Jnk signaling pathway-mediated regulation of Stat3 activation is linked to the development of doxorubicin resistance in cancer cell lines. Biochem Pharmacol. 2010;79(3):373-80. [DOI:10.1016/j.bcp.2009.09.008]
18. Zhong S, Zhang Y, Jansen C, Goto H, Inagaki M, Dong ZJJoBC. MAP kinases mediate UVB-induced phosphorylation of histone H3 at serine 28. J Biol Chem. 2001;276(16):12932-7. [DOI:10.1074/jbc.M010931200] [PMID]
19. Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ, De Cabo R, et al. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PloS One. 2009;4(12):e8414. [DOI:10.1371/journal.pone.0008414] [PMID] [PMCID]
20. Fabregat I, Fernando J, Mainez J, Sancho P. TGF-beta signaling in cancer treatment. Curr Pharm Des. 2014;20(17):2934-47. [DOI:10.2174/13816128113199990591] [PMID]
21. Fu S, Zhou R-r, Li N, Huang Y, Fan X-G. Hepatitis B virus X protein in liver tumor microenvironment. Tumor Biol. 2016;37(12):15371-81. [DOI:10.1007/s13277-016-5406-2] [PMID] [PMCID]
22. Syed V. TGF‐β Signaling in Cancer. J Cell Biochem. 2016;117(6):1279-87. [DOI:10.1002/jcb.25496] [PMID]
23. Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nat Rev Cancer. 2010;10(6):415-24. [DOI:10.1038/nrc2853] [PMID]
24. Farquhar MJ, Harris HJ, Diskar M, Jones S, Mee CJ, Nielsen SU, et al. Protein kinase A-dependent step (s) in hepatitis C virus entry and infectivity. J Virol. 2008;82(17):8797-811. [DOI:10.1128/JVI.00592-08] [PMID] [PMCID]
25. Clarke P, Meintzer SM, Wang Y, Moffitt LA, Richardson-Burns SM, Johnson GL, et al. JNK regulates the release of proapoptotic mitochondrial factors in reovirus-infected cells. J Virol. 2004;78(23):13132-8. [DOI:10.1128/JVI.78.23.13132-13138.2004] [PMID] [PMCID]
26. McLean T, Bachenheimer SJJoV. Activation of cJUN N-terminal kinase by herpes simplex virus type 1 enhances viral replication. J Virol. 1999;73(10):8415-26. [DOI:10.1128/JVI.73.10.8415-8426.1999] [PMID] [PMCID]
27. Reiss S, Rebhan I, Backes P, Romero-Brey I, Erfle H, Matula P, et al. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe. 2011;9(1):32-45. [DOI:10.1016/j.chom.2010.12.002] [PMID] [PMCID]
28. Hirasawa K, Kim A, Han H-S, Han J, Jun H-S, Yoon J-WJJov. Effect of p38 mitogen-activated protein kinase on the replication of encephalomyocarditis virus. J Virol. 2003;77(10):5649-56. [DOI:10.1128/JVI.77.10.5649-5656.2003] [PMID] [PMCID]
29. Colpitts CC, Lupberger J, Doerig C, Baumert TFJBeBA-P, Proteomics. Host cell kinases and the hepatitis C virus life cycle. Biochim Biophys Acta - Proteins Proteom. 2015;1854(10):1657-62. [DOI:10.1016/j.bbapap.2015.04.011] [PMID]
30. Menzel N, Fischl W, Hueging K, Bankwitz D, Frentzen A, Haid S, et al. MAP-kinase regulated cytosolic phospholipase A2 activity is essential for production of infectious hepatitis C virus particles. PLoS Pathog. 2012;8(7):e1002829. [DOI:10.1371/journal.ppat.1002829] [PMID] [PMCID]
31. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, et al. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000;288(5467):870-4. [DOI:10.1126/science.288.5467.870] [PMID]
32. Dubuisson J, Cosset F-LJJoh. Virology and cell biology of the hepatitis C virus life cycle-An update. J Hepatol. 2014;61(1):S3-S13. [DOI:10.1016/j.jhep.2014.06.031] [PMID]
33. Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S, et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996;380(6569):75-9. [DOI:10.1038/380075a0] [PMID]
34. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg MEJS. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995;270(5240):1326-31. [DOI:10.1126/science.270.5240.1326] [PMID]
35. Ozakyol A. Global epidemiology of hepatocellular carcinoma (HCC epidemiology). J Gastrointest Cancer. 2017;48(3):238-40. [DOI:10.1007/s12029-017-9959-0] [PMID]
36. Benn J, Schneider RJJPotNAoS. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci. 1994;91(22):10350-4. [DOI:10.1073/pnas.91.22.10350] [PMID] [PMCID]
37. Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, et al. Increased Nox1 and hydrogen peroxide in prostate cancer. The Prostate. 2005;62(2):200-7. [DOI:10.1002/pros.20137] [PMID]
38. Lee Y-H, Yun YJJoBC. HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem. 1998;273(39):25510-5. [DOI:10.1074/jbc.273.39.25510] [PMID]
39. Benn J, Su F, Doria M, Schneider RJJJoV. Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases. J Virol. 1996;70(8):4978-85. [DOI:10.1128/jvi.70.8.4978-4985.1996] [PMID] [PMCID]
40. Shih W-L, Kuo M-L, Chuang S-E, Cheng A-L, Doong S-LJJoBC. Hepatitis B virus X protein inhibits transforming growth factor-β-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Biol Chem. 2000;275(33):25858-64. [DOI:10.1074/jbc.M003578200] [PMID]
41. Xu J, Yun X, Jiang J, Wei Y, Wu Y, Zhang W, et al. Hepatitis B virus X protein blunts senescence‐like growth arrest of human hepatocellular carcinoma by reducing Notch1 cleavage. Hepatology. 2010;52(1):142-54. [DOI:10.1002/hep.23613] [PMID]
42. Zandi M, Ghadimi P , Fazeli M, Azizi Jalilian F, Fazeli M, et al. Autophagy Role as a Double-Edged Sword in Anesthesiology and Critical Care. J Cell Mol Anesth. 2021;6(1):e149657.
43. Zhong L, Shu W, Dai W, Gao B, Xiong SJJov. Reactive oxygen species-mediated c-Jun NH2-terminal kinase activation contributes to hepatitis B virus X protein-induced autophagy via regulation of the Beclin-1/Bcl-2 interaction. J Virol. 2017;91(15). [DOI:10.1128/JVI.00001-17] [PMID] [PMCID]
44. Zhang J, Fu L-l, Tian M, Liu H-q, Li J-j, Li Y, et al. Design and synthesis of a novel candidate compound NTI-007 targeting sodium taurocholate cotransporting polypeptide [NTCP]-APOA1-HBx-Beclin1-mediated autophagic pathway in HBV therapy. Bioorg Med Chem. 2015;23(5):976-84. [DOI:10.1016/j.bmc.2015.01.020] [PMID]
45. Giannelli G, Villa E, Lahn MJCr. Transforming growth factor-β as a therapeutic target in hepatocellular carcinoma. Cancer Res. 2014;74(7):1890-4. [DOI:10.1158/0008-5472.CAN-14-0243] [PMID]
46. Murata M, Matsuzaki K, Yoshida K, Sekimoto G, Tahashi Y, Mori S, et al. Hepatitis B virus X protein shifts human hepatic transforming growth factor (TGF)-beta signaling from tumor suppression to oncogenesis in early chronic hepatitis B. Hepatology. 2009;49(4):1203-17. [DOI:10.1002/hep.22765] [PMID]
47. Li X, Monks B, Ge Q, Birnbaum MJJN. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1α transcription coactivator. Nature. 2007;447(7147):1012-6. [DOI:10.1038/nature05861] [PMID]
48. Nakatani Y, Kaneto H, Kawamori D, Hatazaki M, Miyatsuka T, Matsuoka T-a, et al. Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem. 2004;279(44):45803-9. [DOI:10.1074/jbc.M406963200] [PMID]
49. Aguirre V, Uchida T, Yenush L, Davis R, White MFJJoBC. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem. 2000;275(12):9047-54. [DOI:10.1074/jbc.275.12.9047] [PMID]
50. Hüllein J, Słabicki M, Rosolowski M, Jethwa A, Habringer S, Tomska K, et al. MDM4 is targeted by 1q gain and drives disease in Burkitt lymphoma. Cancer Res. 2019;79(12):3125-38. [DOI:10.1158/0008-5472.CAN-18-3438] [PMID]
51. Park Y-H, Shin H-J, Kim S-U, Kim J-M, Kim J-H, Bang D-H, et al. iNOS promotes HBx-induced hepatocellular carcinoma via upregulation of JNK activation. Biochem Biophys Res Commun. 2013;435(2):244-9. [DOI:10.1016/j.bbrc.2013.04.071] [PMID]
52. He P, Zhou G, Qu D, Zhang B, Wang Y, Li DJJon. HBx inhibits proliferation and induces apoptosis via Fas/FasL upregulation in rat renal tubular epithelial cells. J Nephrol. 2013;26(6):1033. [DOI:10.5301/jn.5000304] [PMID]
53. Huang H, Tindall DJJJocs. Dynamic FoxO transcription factors. J Cell Sci. 2007;120(15):2479-87. [DOI:10.1242/jcs.001222] [PMID]
54. Murakami A, Ohigashi HJBc. Cancer-preventive anti-oxidants that attenuate free radical generation by inflammatory cells. J Biol Chem. 2006;387(4):387-92. [DOI:10.1515/BC.2006.052] [PMID]
55. Wang S, Chen Z, Hu C, Qian F, Cheng Y, Wu M, et al. Hepatitis B virus surface antigen selectively inhibits TLR2 ligand-induced IL-12 production in monocytes/macrophages by interfering with JNK activation. J Immunol. 2013;190(10):5142-51. [DOI:10.4049/jimmunol.1201625] [PMID]
56. Zhao Z, Hong W, Zeng Z, Wu Y, Hu K, Tian X, et al. Mucroporin-M1 inhibits hepatitis B virus replication by activating the mitogen-activated protein kinase (MAPK) pathway and down-regulating HNF4α in vitro and in vivo. J Biol Chem. 2012;287(36):30181-90. [DOI:10.1074/jbc.M112.370312] [PMID] [PMCID]
57. Kou Y, Yan X, Liu Q, Wei X, Zhang B, Li X, et al. HBV upregulates AP-1 complex subunit mu-1 expression via the JNK pathway to promote proliferation of liver cancer cells. Oncol Lett. 2019;18(1):456-64. [DOI:10.3892/ol.2019.10291] [PMID] [PMCID]
58. Wirth T, Manns MJAoO. The impact of the revolution in hepatitis C treatment on hepatocellular carcinoma. Ann Oncol. 2016;27(8):1467-74. [DOI:10.1093/annonc/mdw219] [PMID]
59. Götte M, Feld JJJNrG, hepatology. Direct-acting antiviral agents for hepatitis C: structural and mechanistic insights. Nat Rev Gastroenterol Hepatol. 2016;13(6):338. [DOI:10.1038/nrgastro.2016.60] [PMID]
60. Gong Y, Li D, Li L, Yang J, Ding H, Zhang C, et al. Smad3 C-terminal phosphorylation site mutation attenuates the hepatoprotective effect of salvianolic acid B against hepatocarcinogenesis. Food Chem Toxicol. 2021;147:111912. [DOI:10.1016/j.fct.2020.111912] [PMID]
61. Cazanave SC, Elmi NA, Akazawa Y, Bronk SF, Mott JL, Gores GJJAJoP-G, et al. CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am J Physiol Gastrointest Liver Physiol. 2010;299(1):G236-G43. [DOI:10.1152/ajpgi.00091.2010] [PMID] [PMCID]
62. Shi YH, Ding WX, Zhou J, He JY, Xu Y, Gambotto AA, et al. Expression of X‐linked inhibitor‐of‐apoptosis protein in hepatocellular carcinoma promotes metastasis and tumor recurrence. Hepatology. 2008;48(2):497-507. [DOI:10.1002/hep.22393] [PMID] [PMCID]
63. Boumlic A, Nominé Y, Charbonnier S, Dalagiorgou G, Vassilaki N, Kieffer B, et al. Prevalence of intrinsic disorder in the hepatitis C virus ARFP/Core+ 1/S protein. FEBS J. 2010;277(3):774-89. [DOI:10.1111/j.1742-4658.2009.07527.x] [PMID]
64. Suzuki N, Oba M. Oldest fossil records of marine protists and the geologic history toward the establishment of the modern-type marine protist world. In Marine Protists, 2015. p. 359-94. Tokyo, Japan: Springer. [DOI:10.1007/978-4-431-55130-0_15] [PMCID]
65. Cocquerel L, Meunier J-C, Pillez A, Wychowski C, Dubuisson JJJov. A retention signal necessary and sufficient for endoplasmic reticulum localization maps to the transmembrane domain of hepatitis C virus glycoprotein E2. J Virol. 1998;72(3):2183-91. [DOI:10.1128/JVI.72.3.2183-2191.1998] [PMID] [PMCID]
66. Pawlotsky J-M, Feld JJ, Zeuzem S, Hoofnagle JHJJoh. From non-A, non-B hepatitis to hepatitis C virus cure. J Hepatol. 2015;62(1):S87-S99. [DOI:10.1016/j.jhep.2015.02.006] [PMID]
67. Lin W, Kim SS, Yeung E, Kamegaya Y, Blackard JT, Kim KA, et al. Hepatitis C virus core protein blocks interferon signaling by interaction with the STAT1 SH2 domain. J Virol. 2006;80(18):9226-35. [DOI:10.1128/JVI.00459-06] [PMID] [PMCID]
68. Vigil D, Cherfils J, Rossman KL, Der CJJNRC. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy?. Nat Rev Cancer. 2010;10(12):842-57. [DOI:10.1038/nrc2960] [PMID] [PMCID]
69. DeNicol G, Tuveson DAJCb, therapy. VAV1: a new target in pancreatic cancer?. Cancer Biol Ther. 2005;4(5):509-11. [DOI:10.4161/cbt.4.5.1781] [PMID]
70. Golob-Schwarzl N, Krassnig S, Toeglhofer AM, Park YN, Gogg-Kamerer M, Vierlinger K, et al. New liver cancer biomarkers: PI3K/AKT/mTOR pathway members and eukaryotic translation initiation factors. Eur J Cancer. 2017;83:56-70. [DOI:10.1016/j.ejca.2017.06.003] [PMID]
71. Yoshida K, Matsuzaki K, Mori S, Tahashi Y, Yamagata H, Furukawa F, et al. Transforming growth factor-β and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol. 2005;166(4):1029-39. [DOI:10.1016/S0002-9440(10)62324-3] [PMID]
72. Patel K, Nelson DR, Rockey DC, Afdhal NH, Smith KM, Oh E, et al. Correlation of FIBROSpect II with histologic and morphometric evaluation of liver fibrosis in chronic hepatitis C. Clin Gastroenterol Hepatol. 2008;6(2):242-7. [DOI:10.1016/j.cgh.2007.11.009] [PMID]
73. Valva P, Ríos DA, De Matteo E, Preciado MVJWjog. Chronic hepatitis C virus infection: serum biomarkers in predicting liver damage. World J Gastroenterol. 2016;22(4):1367. [DOI:10.3748/wjg.v22.i4.1367] [PMID] [PMCID]
74. Zhao G, Hatting M, Nevzorova YA, Peng J, Hu W, Boekschoten MV, et al. Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis. Gut. 2014;63(7):1159-72. [DOI:10.1136/gutjnl-2013-305507] [PMID]
75. Huang J-T, Tseng C-P, Liao M-H, Lu S-C, Yeh W-Z, Sakamoto N, et al. Hepatitis C virus replication is modulated by the interaction of nonstructural protein NS5B and fatty acid synthase. J Virol. 2013;87(9):4994-5004. [DOI:10.1128/JVI.02526-12] [PMID] [PMCID]
76. Yoshida M, Miyoshi I, Hinuma YJPotNAoS. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci. 1982;79(6):2031-5. [DOI:10.1073/pnas.79.6.2031] [PMID] [PMCID]
77. Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura YJEb, medicine. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med. 2006;231(1):20-7. [DOI:10.1177/153537020623100103] [PMID]
78. Nabeshima K, Suzumiya J, Nagano M, Ohshima K, Toole BP, Tamura K, et al. Emmprin, a cell surface inducer of matrix metalloproteinases (MMPs), is expressed in T‐cell lymphomas. J Pathol. 2004;202(3):341-51. [DOI:10.1002/path.1518] [PMID]
79. Smart DE, Vincent KJ, Arthur MJ, Eickelberg O, Castellazzi M, Mann J, et al. JunD regulates transcription of the tissue inhibitor of metalloproteinases-1 and interleukin-6 genes in activated hepatic stellate cells. J Biol Chem. 2001;276(26):24414-21. [DOI:10.1074/jbc.M101840200] [PMID]
80. Tanaka Y, Yoshida A, Takayama Y, Tsujimoto H, Tsujimoto A, Hayami M, et al. Heterogeneity of antigen molecules recognized by anti‐tax1 monoclonal antibody Lt‐4 in cell lines bearing human T cell leukemia virus type I and related retroviruses. Jpn J Cancer Res. 1990;81(3):225-31. [DOI:10.1111/j.1349-7006.1990.tb02554.x] [PMID] [PMCID]
81. Okamoto S, Mukaida N, Yasumoto K, Rice N, Ishikawa Y, Horiguchi H, et al. The Interleukin-8 AP-1 and kB-like Sites Are Genetic End Targets of FK506-sensitive Pathway Accompanied by Calcium Mobilization. J Biol Chem. 1994;269(11):8582-9. [DOI:10.1016/S0021-9258(17)37234-4]
82. Stocco CO, Lau LF, Gibori GJJoBC. A Calcium/Calmodulin-dependent Activation of ERK1/2 Mediates JunD Phosphorylation and Induction of nur77 and20α-hsd Genes by Prostaglandin F2α in Ovarian Cells. J Biol Chem. 2002;277(5):3293-302. [DOI:10.1074/jbc.M110936200] [PMID]
83. Vandel L, Montreau N, Vial E, Pfarr CM, Binetruy B, Castellazzi MJM, et al. Stepwise transformation of rat embryo fibroblasts: c-Jun, JunB, or JunD can cooperate with Ras for focus formation, but a c-Jun-containing heterodimer is required for immortalization. Mol Cell Biol. 1996;16(5):1881-8. [DOI:10.1128/MCB.16.5.1881] [PMID] [PMCID]
84. Arnold J, Yamamoto B, Li M, Phipps AJ, Younis I, Lairmore MD, et al. Enhancement of infectivity and persistence in vivo by HBZ, a natural antisense coded protein of HTLV-1. Blood. 2006;107(10):3976-82. [DOI:10.1182/blood-2005-11-4551] [PMID] [PMCID]
85. Thébault S, Basbous J, Hivin P, Devaux C, Mesnard J-MJFl. HBZ interacts with JunD and stimulates its transcriptional activity. FEBS Lett. 2004;562(1-3):165-70. [DOI:10.1016/S0014-5793(04)00225-X] [PMID]
86. Satou Y, Yasunaga J-i, Yoshida M, Matsuoka MJPotNAoS. HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells. Proc Natl Acad Sci. 2006;103(3):720-5. [DOI:10.1073/pnas.0507631103] [PMID] [PMCID]
87. Cerimele F, Battle T, Lynch R, Frank DA, Murad E, Cohen C, et al. Reactive oxygen signaling and MAPK activation distinguish Epstein-Barr Virus (EBV)-positive versus EBV-negative Burkitt's lymphoma. Proc Natl Acad Sci. 2005;102(1):175-9. [DOI:10.1073/pnas.0408381102] [PMID] [PMCID]
88. Huang W-C, Li X, Liu J, Lin J, Chung LWJMCR. Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol Cancer Res. 2012;10(1):133-42. [DOI:10.1158/1541-7786.MCR-11-0206] [PMID] [PMCID]
89. Li L, Su X, Choi GCG, Cao Y, Ambinder RF, Tao QJBc. Methylation profiling of Epstein-Barr virus immediate-early gene promoters, BZLF1 and BRLF1 in tumors of epithelial, NK-and B-cell origins. BMC Cancer. 2012;12(1):1-10. [DOI:10.1186/1471-2407-12-125] [PMID] [PMCID]
90. Xiao L, Hu Z, Dong X, Tan Z, Li W, Tang M, et al. Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene. 2014;33(37):4568-78. [DOI:10.1038/onc.2014.32] [PMID] [PMCID]
91. Lambert SL, Martinez OMJTJoI. Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J Immun. 2007;179(12):8225-34. [DOI:10.4049/jimmunol.179.12.8225] [PMID]
92. Mainou BA, Everly DN, Raab-Traub NJO. Epstein-Barr virus latent membrane protein 1 CTAR1 mediates rodent and human fibroblast transformation through activation of PI3K. Oncogene. 2005;24(46):6917-24. [DOI:10.1038/sj.onc.1208846] [PMID]
93. Hsieh C-H, Shyu W-C, Chiang C-Y, Kuo J-W, Shen W-C, Liu R-SJPo. NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme. PloS One. 2011;6(9):e23945. [DOI:10.1371/journal.pone.0023945] [PMID] [PMCID]
94. Ha YJ, Lee JRJTJoI. Role of TNF receptor-associated factor 3 in the CD40 signaling by production of reactive oxygen species through association with p40phox, a cytosolic subunit of nicotinamide adenine dinucleotide phosphate oxidase. J Immunol. 2004;172(1):231-9. [DOI:10.4049/jimmunol.172.1.231] [PMID]
95. Manea A, Manea SA, Gafencu AV, Raicu M, Simionescu MJA, thrombosis,, biology v. AP-1-Dependent transcriptional regulation of NADPH oxidase in human aortic smooth muscle cells: role of p22phox subunit. Arterioscler Thromb Vasc Biol. 2008;28(5):878-85. [DOI:10.1161/ATVBAHA.108.163592] [PMID]
96. Dawson CW, Port RJ, Young LS. The role of the EBV-encoded latent membrane proteins LMP1 and LMP2 in the pathogenesis of nasopharyngeal carcinoma (NPC). Semin Cancer Biol. 2012;22(2):144-53. [DOI:10.1016/j.semcancer.2012.01.004] [PMID]
97. Morris MA, Dawson CW, Young LSJFo. Role of the Epstein-Barr virus-encoded latent membrane protein-1, LMP1, in the pathogenesis of nasopharyngeal carcinoma. Future Oncol. 2009;5(6):811-25. [DOI:10.2217/fon.09.53] [PMID]
98. Rowe M, Peng-Pilon M, Huen DS, Hardy R, Croom-Carter D, Lundgren E, et al. Upregulation of bcl-2 by the Epstein-Barr virus latent membrane protein LMP1: a B-cell-specific response that is delayed relative to NF-kappa B activation and to induction of cell surface markers. J Virol. 1994;68(9):5602-12. [DOI:10.1128/jvi.68.9.5602-5612.1994] [PMID] [PMCID]
99. Guo L, Tang M, Yang L, Xiao L, Bode AM, Li L, et al. Epstein-Barr virus oncoprotein LMP1 mediates survivin upregulation by p53 contributing to G1/S cell cycle progression in nasopharyngeal carcinoma. Int J Mol Med. 2012;29(4):574-80. [DOI:10.3892/ijmm.2012.889] [PMID] [PMCID]
100. Bosch FX, Lorincz A, Muñoz N, Meijer C, Shah KVJJocp. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol. 2002;55(4):244-65. [DOI:10.1136/jcp.55.4.244] [PMID] [PMCID]
101. Zur Hausen HJNrc. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342-50. [DOI:10.1038/nrc798] [PMID]
102. Hasan UA, Zannetti C, Parroche P, Goutagny N, Malfroy M, Roblot G, et al. The human papillomavirus type 16 E7 oncoprotein induces a transcriptional repressor complex on the Toll-like receptor 9 promoter. J Exp Med. 2013;210(7):1369-87. [DOI:10.1084/jem.20122394] [PMID] [PMCID]
103. Üren A, Fallen S, Yuan H, Usubütün A, Küçükali T, Schlegel R, et al. Activation of the canonical Wnt pathway during genital keratinocyte transformation: a model for cervical cancer progression. Cancer Res. 2005;65(14):6199-206. [DOI:10.1158/0008-5472.CAN-05-0455] [PMID]
104. Perez-Plasencia C, Duenas-Gonzalez A, Alatorre-Tavera BJIaom. Second hit in cervical carcinogenesis process: involvement of wnt/beta catenin pathway. Int Arch Med. 2008;1(1):10. [DOI:10.1186/1755-7682-1-10] [PMID] [PMCID]
105. Zandi M, Hosseini F, Adli AH, Salmanzadeh S, Behboudi E, Halvaei P, Khosravi A, Abbasi S. State-of-the-art cerium nanoparticles as promising agents against human viral infections. Biomed Pharmacother. 2022;156:113868. [DOI:10.1016/j.biopha.2022.113868] [PMID]
106. Zhu H, Mazor M, Kawano Y, Walker MM, Leung HY, Armstrong K, et al. Analysis of Wnt gene expression in prostate cancer: mutual inhibition by WNT11 and the androgen receptor. Cancer Res. 2004;64(21):7918-26. [DOI:10.1158/0008-5472.CAN-04-2704] [PMID]
107. Lichtig H, Gilboa DA, Jackman A, Gonen P, Levav-Cohen Y, Haupt Y, et al. HPV16 E6 augments Wnt signaling in an E6AP-dependent manner. Virology. 2010;396(1):47-58. [DOI:10.1016/j.virol.2009.10.011] [PMID]
108. Tada M, Concha ML, Heisenberg C-P, editors. Non-canonical Wnt signalling and regulation of gastrulation movements. Semin Cell Biol. 2002;13(3):251-260. [DOI:10.1016/S1084-9521(02)00052-6] [PMID]
109. Pandita S, Deshpande R, Aphale S, Kaul-Ghanekar R. Role of Medicinal Plants in Targeting Important Signaling Pathways in Cervical Cancer. In Holistic Healthcare: Possibilities and Challenges. 1st ed. 2017. Florida, U.S.A.: Apple Academic Press. [DOI:10.1201/9781315366241-9] [PMCID]
110. Levan J, Vliet-Gregg PA, Robinson KL, Matsumoto LR, Katzenellenbogen RA. HPV type 16 E6 and NFX1-123 augment JNK signaling to mediate keratinocyte differentiation and L1 expression. Virology. 2019;531:171-82. [DOI:10.1016/j.virol.2019.03.008] [PMID] [PMCID]
111. Chintala S, Levan J, Robinson K, Quist K, Katzenellenbogen RA. Genes Regulated by HPV 16 E6 and High Expression of NFX1-123 in Cervical Cancers. Onco Targets Ther. 2020;13:6143-56. [DOI:10.2147/OTT.S251926] [PMID] [PMCID]
112. Laussmann MA, Passante E, Hellwig CT, Tomiczek B, Flanagan L, Prehn JH, et al. Proteasome inhibition can impair caspase-8 activation upon submaximal stimulation of apoptotic tumor necrosis factor-related apoptosis inducing ligand (TRAIL) signaling. J Biol Chem. 2012;287(18):14402-11. [DOI:10.1074/jbc.M111.304378] [PMID] [PMCID]
113. Faraji SN, Raee MJ, Hashemi SM, Daryabor G, Tabrizi R, Dashti FS, et al. Human interaction targets of SARS-CoV-2 spike protein: A systematic review. Eur J Inflamm. 2022;20:1721727X221095382. [DOI:10.1177/1721727X221095382] [PMCID]
114. Leidal AM, Cyr DP, Hill RJ, Lee PW, McCormick CJCh, microbe. Subversion of autophagy by Kaposi's sarcoma-associated herpesvirus impairs oncogene-induced senescence. Cell Host Microbe. 2012;11(2):167-80. [DOI:10.1016/j.chom.2012.01.005] [PMID]
115. Liang Q, Chang B, Brulois KF, Castro K, Min C-K, Rodgers MA, et al. Kaposi's sarcoma-associated herpesvirus K7 modulates Rubicon-mediated inhibition of autophagosome maturation. J Virol. 2013;87(22):12499-503. [DOI:10.1128/JVI.01898-13] [PMID] [PMCID]
116. Van Grol J, Subauste C, Andrade RM, Fujinaga K, Nelson J, Subauste CSJPo. HIV-1 inhibits autophagy in bystander macrophage/monocytic cells through Src-Akt and STAT3. PloS One. 2010;5(7):e11733. [DOI:10.1371/journal.pone.0011733] [PMID] [PMCID]
117. Saha SK, Pietras EM, He JQ, Kang JR, Liu SY, Oganesyan G, et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 2006;25(14):3257-63. [DOI:10.1038/sj.emboj.7601220] [PMID] [PMCID]
118. Liang C, E X, Jung JUJA. Downregulation of autophagy by herpesvirus Bcl-2 homologs. Autophagy. 2008;4(3):268-72. [DOI:10.4161/auto.5210] [PMID]
119. Nakano HJTii. Signaling crosstalk between NF-κB and JNK. Trends Immunol. 2004;25(8):402-5. [DOI:10.1016/j.it.2004.05.007] [PMID]
120. Wei Y, Sinha SC, Levine BJA. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy. 2008;4(7):949-51. [DOI:10.4161/auto.6788] [PMID] [PMCID]
121. Ni H-M, Chen X, Ding W-X, Schuchmann M, Yin X-MJTAjop. Differential roles of JNK in ConA/GalN and ConA-induced liver injury in mice. Am J Pathol. 2008;173(4):962-72. [DOI:10.2353/ajpath.2008.080358] [PMID] [PMCID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله میکروب شناسی پزشکی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق   ناشر: موسسه فرنام

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb Publishr: Farname Inc.