سال 17، شماره 3 - ( خرداد - تیر 1402 )                   جلد 17 شماره 3 صفحات 317-309 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahdavi R, Akbari Jonoush Z, Ghafourian M, Khoshnam S E, Nezhad Dehbashi F, Farzaneh M. The Effect of Remdesivir as an anti-COVID-19 Drug on Chicken Hepatocyte Enzymes; an in vitro Study. Iran J Med Microbiol 2023; 17 (3) :309-317
URL: http://ijmm.ir/article-1-1903-fa.html
مهدوی رویا، اکبری جونوش زهرا، غفوریان مهری، خوشنام سید اسماعیل، نژاد دهباشی فرشته، فرزانه مریم. اثر رمدسیویر به عنوان یک داروی ضد کووید-19 بر روی آنزیم های سلول های هپاتوسیتی جنین جوجه ؛ یک مطالعه آزمایشگاهی. مجله میکروب شناسی پزشکی ایران. 1402; 17 (3) :309-317

URL: http://ijmm.ir/article-1-1903-fa.html


1- کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران
2- گروه ایمنی شناسی، دانشکده پزشکی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران
3- مرکز تحقیقات فیزیولوژی خلیج فارس، پژوهشکده علوم پایه پزشکی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران
4- مرکز تحقیقات سلولی و مولکولی، پژوهشکده علوم پایه پزشکی، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران
5- مرکز تحقیقات باروری، ناباروری و سلامت جنین، دانشگاه علوم پزشکی جندی شاپور اهواز، اهواز، ایران ، maryamfarzaneh2013@yahoo.com
چکیده:   (1319 مشاهده)

زمینه و اهداف:  مطالعات محدودی بر روی سمیت بالقوه رمدسیویر (RDV) بر سلول های کبدی (هپاتوسیتی) در شرایط آزمایشگاهی وجود دارد. با توجه به نتایج موثر رمدسیویر در بیماران مبتلا به کووید-۱۹ (COVID-۱۹) و تأثیرات منفی آن بر عملکرد کبد، در مطالعه حاضر، اثرات رمدسیویر بر بیان و فعالیت آنزیم‌های کبدی در سلول‌های هپاتوسیتی مشتق از جنین جوجه بررسی گردید.
مواد و روش کار:  تعداد ۲۰ تخم مرغ نطفه دار (در مرحله تکوینی(X  در دمای ۵/۳۷ درجه سانتی گراد و رطوبت ۶۵-۶۰% به مدت ۱۰ روز (در مرحله تکوینی(HH۳۵  انکوبه شدند. سلول های هپاتوسیتی در محیط کشت DMEM/F۱۲+۱۰% FBS  کشت داده شدند. پس از ۳ روز، چهار غلظت RDV (۲.۰۰، ۳.۰۰، ۴.۰۰ و ۵.۰۰ میکرومولار) به محیط کشت اضافه گردید. سپس عملکرد آنزیم های کبدی آمینوترانسفرازهای آلانین (ALT) و آسپارتات (AST) توسط الایزا و سطح بیان آن ها با روش کمی PCR (qPCR) اندازه‌گیری شد.
یافته ها:  در مطالعه حاضر، سلول هپاتوسیتی دارای ساختار شش ضلعی با هسته بزرگ و هستک بودند. در رنگ‌آمیزی پریودیک اسید شیف  (PAS)سلول‌های PAS مثبت با رنگ صورتی، تایید کننده محتوای گلیکوژن سلول‌های هپاتوسیتی بودند. در حضور غلظت های ۴ و ۵ میکرومولار RDV، بیشتر از ۵۰% از سلول‌های هپاتوسیتی پس از ۴۸ ساعت، زنده مانی (Viability) خود را از دست دادند  (P<۰.۰۰۱). از طرفی، بیان هر دو آنزیم ALT و AST پس از دریافت RDV به طور معنا‌داری افزایش یافت (P<۰.۰۰۱) . همچنین، عملکرد این دو آنزیم در گروه +RDV به طور قابل توجهی افزایش یافت.
نتیجه‌گیری:  نتایج این مطالعه نشان داد که بیان و عملکرد آنزیم های کبدی پس از تیمار با RDV افزایش می یابد.

متن کامل [PDF 649 kb]   (525 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: ویروس شناسی پزشکی
دریافت: 1401/11/3 | پذیرش: 1402/2/9 | انتشار الکترونیک: 1402/4/5

فهرست منابع
1. Harapan H, Itoh N, Yufika A, Winardi W, Keam S, Te H, et al. Coronavirus disease 2019 (COVID-19): A literature review. J Infect Public Health. 2020;13(5):667-73. [DOI:10.1016/j.jiph.2020.03.019] [PMID] [PMCID]
2. Arefinia N, Ghoreshi Z-a-S, Alipour AH, Reza Molaei H, Samie M, Sarvari J. Gastrointestinal Manifestations in Patients Infected with SARS-CoV-2. Iran J Med Microbiol. 2022;16(4):271-81. [DOI:10.30699/ijmm.16.4.271]
3. Hui DS, Azhar EI, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264-6. [DOI:10.1016/j.ijid.2020.01.009] [PMID] [PMCID]
4. Kazempour Dizaji M, Jamaati H, bahrami n, Farzanegan B, Rekabi M, Mokhber Dezfuli M, et al. ffect of Cytokines Gene Expression and Serum Level of Vitamin D on the Severity of COVID-19. Iran J Med Microbiol. 2022;16(5):412-9. [DOI:10.30699/ijmm.16.5.412]
5. Del Rio C, Malani PN. 2019 Novel Coronavirus-Important Information for Clinicians. JAMA. 2020;323(11):1039-40. [DOI:10.1001/jama.2020.1490] [PMID]
6. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses-a statement of the Coronavirus Study Group. BioRxiv. 2020:937862. [DOI:10.1101/2020.02.07.937862]
7. Guan W-j, Ni Z-y, Hu Y, Liang W-h, Ou C-q, He J-x, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708-20. [DOI:10.1056/NEJMoa2002032] [PMID] [PMCID]
8. Wang F-S, Zhang C. What to do next to control the 2019-nCoV epidemic? Lancet. 2020;395(10222):391-3. [DOI:10.1016/S0140-6736(20)30300-7] [PMID]
9. Dufour J-F, Marjot T, Becchetti C, Tilg H. COVID-19 and liver disease. Am J Trop Med. 2022;106(4):1026. [DOI:10.1136/gutjnl-2021-326792] [PMID]
10. Kariyawasam JC, Jayarajah U, Abeysuriya V, Riza R, Seneviratne SL. Involvement of the Liver in COVID-19: A Systematic Review. Am J Trop Med Hyg. 2022;106(4):1026-41. [DOI:10.4269/ajtmh.21-1240] [PMID] [PMCID]
11. Ramazonovna MZ. Etiopathogenetic aspects of liver damage in patients with covid-19. Eur J Med Res prac. 2022;2(2):23-9.
12. Ghoda A, Ghoda M. Liver Injury in COVID-19 Infection: A Systematic Review. Cureus. 2020;12(7):e9487. [DOI:10.7759/cureus.9487]
13. Moon AM, Barritt ASt. Elevated Liver Enzymes in Patients with COVID-19: Look, but Not Too Hard. Dig Dis Sci. 2021;66(6):1767-9. [DOI:10.1007/s10620-020-06585-9] [PMID] [PMCID]
14. Jothimani D, Venugopal R, Abedin MF, Kaliamoorthy I, Rela M. COVID-19 and the liver. J Hepatol. 2020;73(5):1231-40. [DOI:10.1016/j.jhep.2020.06.006] [PMID] [PMCID]
15. Schaefer EA, Arvind A, Bloom PP, Chung RT. Interrelationship Between Coronavirus Infection and Liver Disease. Clin Liver Dis. 2020;15(5):175-80. [DOI:10.1002/cld.967] [PMID] [PMCID]
16. Alqahtani SA, Schattenberg JM. Liver injury in COVID-19: The current evidence. United European Gastroenterol J. 2020;8(5):509-19. [DOI:10.1177/2050640620924157] [PMID] [PMCID]
17. Goldman JD, Lye DC, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med. 2020;383(19):1827-37. [DOI:10.1056/NEJMoa2015301] [PMID] [PMCID]
18. Eastman RT, Roth JS, Brimacombe KR, Simeonov A, Shen M, Patnaik S, et al. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent Sci. 2020;6(5):672-83. [DOI:10.1021/acscentsci.0c00489] [PMID] [PMCID]
19. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the Treatment of Covid-19 - Final Report. N Engl J Med. 2020;383(19):1813-26. [DOI:10.1056/NEJMoa2007764] [PMID] [PMCID]
20. Adamsick ML, Gandhi RG, Bidell MR, Elshaboury RH, Bhattacharyya RP, Kim AY, et al. Remdesivir in Patients with Acute or Chronic Kidney Disease and COVID-19. J Am Soc Nephrol. 2020;31(7):1384-86. [DOI:10.1681/ASN.2020050589] [PMID] [PMCID]
21. Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):1-14. [DOI:10.1038/s41467-019-13940-6] [PMID] [PMCID]
22. Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, et al. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science. 2020;368(6498):1499-504. [DOI:10.1126/science.abc1560] [PMID] [PMCID]
23. Bjork JA, Wallace KB. Remdesivir; molecular and functional measures of mitochondrial safety. Toxicol Appl Pharmacol. 2021;433:115783. [DOI:10.1016/j.taap.2021.115783] [PMID] [PMCID]
24. Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, Cheng VC-C, et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients With Coronavirus Disease 2019 (COVID-19). Clin Infect Dis. 2020:ciaa478. [DOI:10.1093/cid/ciaa478] [PMID] [PMCID]
25. Hanafy AS, Abd-Elsalam S. Challenges in COVID-19 drug treatment in patients with advanced liver diseases: A hepatology perspective. World J Gastroenterol. 2020;26(46):7272-86. [DOI:10.3748/wjg.v26.i46.7272] [PMID] [PMCID]
26. Hu C, Li L. In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein Cell. 2015;6(8):562-74. [DOI:10.1007/s13238-015-0180-2] [PMID] [PMCID]
27. Chen C, Soto-Gutierrez A, Baptista PM, Spee B. Biotechnology Challenges to In Vitro Maturation of Hepatic Stem Cells. Gastroenterology. 2018;154(5):1258-72. [DOI:10.1053/j.gastro.2018.01.066] [PMID] [PMCID]
28. Farzaneh M, Attari F, Khoshnam S, Mozdziak P. The method of chicken whole embryo culture using the eggshell windowing, surrogate eggshell and ex ovo culture system. Br Poult Sci. 2018;59(2):240-4. [DOI:10.1080/00071668.2017.1413234] [PMID]
29. Sohaimi NM, Bejo MH, Omar AR, Ideris A, Isa NM. Molecular characterization of fowl adenovirus isolate of Malaysia attenuated in chicken embryo liver cells and its pathogenicity and immunogenicity in chickens. PloS One. 2019;14(12):e0225863. [DOI:10.1371/journal.pone.0225863] [PMID] [PMCID]
30. Soumyalekshmi S, Ajith M, Chandraprakash M. Isolation of fowl adenovirus in chicken embryo liver cell culture and its detection by hexon gene based PCR. Indian J Sci Res Technol. 2014;2(3):33-6.
31. Guo H-W, Chang J, Wang P, Yin Q-Q, Liu C-Q, Xu X-X, et al. Effects of compound probiotics and aflatoxin-degradation enzyme on alleviating aflatoxin-induced cytotoxicity in chicken embryo primary intestinal epithelium, liver and kidney cells. AMB Express. 2021;11(1):1-12. [DOI:10.1186/s13568-021-01196-7] [PMID] [PMCID]
32. Sohaimi N, Bejo M, Omar A, Ideris A, Isa N. Pathogenicity and immunogenicity of attenuated fowl adenovirus from chicken embryo liver cells in commercial broiler chickens. Adv Anim Vet Sci. 2021;9(5):648-54. [DOI:10.17582/journal.aavs/2021/9.5.648.654]
33. Strober W. Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol. 2015;111(1):A.3B.1-2. [DOI:10.1002/0471142735.ima03bs111] [PMID] [PMCID]
34. Arias E. Effects of the peroxisome proliferator di(2-ethylhexyl)phthalate on cell turnover and peroxisome proliferation in primary chick embryo hepatocytes. Environ Toxicol Chem. 2012;31(12):2856-60. [DOI:10.1002/etc.2017] [PMID]
35. Wang Y, Liu S, Liu H, Li W, Lin F, Jiang L, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020;73(4):807-16. https://doi.org/10.1016/j.jhep.2020.06.028 [DOI:10.1016/j.jhep.2020.05.002]
36. Farzaneh M, Derakhshan Z, Hallajzadeh J, Sarani NH, Nejabatdoust A, Khoshnam SE. Suppression of TGF-β and ERK Signaling Pathways as a New Strategy to Provide Rodent and Non-Rodent Pluripotent Stem Cells. Curr Stem Cell Res Ther. 2019;14(6):466-73. [DOI:10.2174/1871527318666190314110529] [PMID]
37. Farzaneh M, Attari F, Mozdziak P, Khoshnam S. The evolution of chicken stem cell culture methods. Br Poult Sci. 2017;58(6):681-6. [DOI:10.1080/00071668.2017.1365354] [PMID]
38. Zampino R, Mele F, Florio LL, Bertolino L, Andini R, Galdo M, et al. Liver injury in remdesivir-treated COVID-19 patients. Hepatol Int. 2020;14(5):881-3. [DOI:10.1007/s12072-020-10077-3] [PMID] [PMCID]
39. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020;382(24):2327-36. [DOI:10.1056/NEJMoa2007016] [PMID] [PMCID]
40. Carothers C, Birrer K, Vo M. Acetylcysteine for the treatment of suspected Remdesivir‐associated acute liver failure in COVID‐19: a case series. Hum Pharmacol Drug Therap. 2020;40(11):1166-71. [DOI:10.1002/phar.2464] [PMID] [PMCID]
41. Li Y-N, Su Y. Remdesivir attenuates high fat diet (HFD)-induced NAFLD by regulating hepatocyte dyslipidemia and inflammation via the suppression of STING. Biochem Biophys Res Commun. 2020;526(2):381-8. [DOI:10.1016/j.bbrc.2020.03.034] [PMID] [PMCID]
42. Yang R-X, Zheng R-D, Fan J-G. Etiology and management of liver injury in patients with COVID-19. World J Gastroenterol. 2020;26(32):4753-62. [DOI:10.3748/wjg.v26.i32.4753] [PMID] [PMCID]
43. Mohammed SA, Eid KM, Anyiam FE, Wadaaallah H, Muhamed MAM, Morsi MH, et al. Liver injury with COVID-19: laboratory and histopathological outcome-systematic review and meta-analysis. Egypt Liver J. 2022;12(1):1-8. https://doi.org/10.1186/s43066-023-00235-1 [DOI:10.1186/s43066-022-00171-6]
44. Yohanathan L, Campioli CC, Mousa OY, Watt K, Friedman DZ, Shah V, et al. Liver transplantation for acute liver failure in a SARS-CoV-2 PCR-positive patient. Am J Transplant. 2021;21(8):2890-4. [DOI:10.1111/ajt.16582] [PMID] [PMCID]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله میکروب شناسی پزشکی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق   ناشر: موسسه فرنام

© 2025 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb Publishr: Farname Inc.