year 14, Issue 3 (May-Jun 2020)                   Iran J Med Microbiol 2020, 14(3): 270-289 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Chanbari M, Mirnejad R, Babapour E. Evaluation of Resistance to Fluoroquinolones and Its Relationship whit parC Gene Mutation in Klebsiella pneumoniae Clinical Isolates. Iran J Med Microbiol. 2020; 14 (3) :270-289
URL: http://ijmm.ir/article-1-987-en.html
1- Department of Microbiology, Faculty of Sciences, Karaj Branch, Islamic Azad University, Karaj, Iran
2- Molecular Biology Research Center, Baqiyatallah University of MeIrandical of Sciences, Tehran, Iran
3- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran , e_babapoor@yahoo.com
Abstract:   (1421 Views)

Background & Objective:  Klebsiella pneumoniae has received attention due to a wide range of diseases and antibiotic resistance.The resistance to fluoroquinolones in gram-negative bacteria is often due to chromosomal mutations in the gyr and par genes. This research aimed at investigating the pattern of fluoroquinolone resistance and its relation with a mutation in the parC gene among clinical isolates of K. Pneumoniae.
 Methods: In this descriptive-analytical study, 95 K. pneumoniae, after biochemical and molecular diagnosis, were evaluated for resistance to different antibiotics by disk diffusion agar according to CLSI recommendations and screening for ciprofloxacin-resistant isolates. Mutation in the ciprofloxacin resistance determinant region of the parC gene of K. pneumoniae resistant to ciprofloxacin was performed by PCR amplification and then amplified fragment sequencing and finally with the standard bacterial genome sequencing available at NCBI site, became BLAST through online software, Insilico, and Clustalw2.
Results:  The result of the antibiogram showed implies an expansion of MDR bacteria. 3.1% of isolates were resistant to all 13 antibiotics studied and 24.2% were ciprofloxacin-resistant. The highest and lowest percentages of antibiotic resistance were determined for ampicillin and amoxicillin (98.9%) and imipenem (13.6%), respectively. Sequence analysis of the parC gene showed that of 23 isolates resistant to ciprofloxacin, 16 isolates at codon 80 (I80S), one at codon 84 (E84K) were and 3 isolates also had frame-shift mutations.
Conclusion: Mutations in the parC gene can be one of the major contributors to resistance to fluoroquinolones and increased MDR bacteria and nosocomial infections.

Full-Text [PDF 2095 kb]   (511 Downloads) |   |   Full-Text (HTML)  (209 Views)  
Type of Study: Original | Subject: Antibiotic Resistance
Received: 2019/10/29 | Accepted: 2020/03/21 | ePublished: 2020/05/12

References
1. Alves MS, Dias RC, De Castro AC, Riley LW,Moreira BM.Identification of clinical isolates of indole-positive and indole-negative Klebsiella spp. J Clin Microbiol. 2006 [DOI:10.1128/JCM.00940-06] [PMID] [PMCID]
2. October;44(10):3646-3640.
3. Babypadmini S, Appalaraju B. Extended spectrum-lactamases in urinary isolates of Escherichia coli and Klebsiella pneumoniae-prevalence and susceptibility pattern in a tertiary care hospital. Indian Journal of Medical Microbiology. 2004;22(3):172.
4. Deguchi T, Fukuoka A, Yasuda M, Nakano M, Ozeki S, Kanematsu E, et al. Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV in quinolone-resistant clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 1997;41(3):699. [DOI:10.1128/AAC.41.3.699] [PMID] [PMCID]
5. Molana Z, Ferdosi Shahandashti E, Gharavi S, Shafii M, Norkhomami S, Ahangarkani F, et al. Molecular investigation of class I integron in Klebsiella Pneumoniae isolated from intensive care unit (Shahid Beheshti Hospital of Babol 2010). J Babol Univ Med Sci 2011;13(6): 7-13.
6. Ferragut C, Izard D, Gavini F, Kersters K, De Ley J, Leclerc H. Klebsiella trevisanii: a new species from water and soil. Int J Syst Bacteriol.1983; 33(2):133-42. [DOI:10.1099/00207713-33-2-133]
7. Izard D, Ferragut C, Gavini F, Kersters K, De Ley J, Leclerc H. Klebsiella terrigena, a new species from soil and water. Int J Syst Bacteriol.1981; 31(2): 116-27. [DOI:10.1099/00207713-31-2-116]
8. Drancourt M, Bollet C, Carta A, Rousselier P. Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with 201 description of R. ornithinolytica comb. nov., R. terrigena comb. nov. and R. planticola comb. nov. Int J Syst Evol Microbiol.2001;51(3): 925-32. [DOI:10.1099/00207713-51-3-925] [PMID]
9. Ko WC, Paterson DL, Sagnimeni AJ, Hansen DS, Von Gottberg A, Mohapatra S, et al. Community-acquired Klebsiella pneumoniae bacteremia: global differences inclinical patterns. Emerg Infect Dis. 2002;8(2):160-6. [DOI:10.3201/eid0802.010025] [PMID] [PMCID]
10. Rahmati Roodsari R, Fallah F, Taherpour A, Hakemi M, Hashemi A. Carbapenem- Resistant Bacteria and Laboratory Detection Methods. Archives of Pediatric Infectiou Diseases.2013; 1(4): 191-188. [DOI:10.5812/pedinfect.5193]
11. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008; 21(3): 538-582. [DOI:10.1128/CMR.00058-07] [PMID] [PMCID]
12. Perez F, Hujer AM, Hujer KM, Dacker BK, Rather PN, Bonomo RA. Global challenge of multidrug- resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2007; 51(10): 3471-84. [DOI:10.1128/AAC.01464-06] [PMID] [PMCID]
13. Chien ST, Lin CH, Hsueh JC, Lip L, Hsu CH, Chang SH, et al. Mutation of gyrA and parC in clinical isolates of Acinetobacter baumannii and its relationship with antimicrobial drugs resistance in Taiwan. Annals of Microbioligy. 2009; 59(2): 369-372 [DOI:10.1007/BF03178341]
14. Hamouda A, Amyes SG. Novel gyrA and parC point mutations in two strains of Acinetobacter baumannii resistant to ciprofloxacin. J Antimicrob Chemother. 2004; 54(3): 695-6. [DOI:10.1093/jac/dkh368] [PMID]
15. Chiu CH, Lee HY, Tseng LY, Chen CL, Chia JH, Su LH, et al. Mechanisms of resistance to ciprofloxacin, ampicillin/sulbactam and imipenem in Acinetobacter baumannii clinical isolates in Taiwan. Int J Antimicrob Agents. 2010; 35(4): 382-6. [DOI:10.1016/j.ijantimicag.2009.12.009] [PMID]
16. Hujer K, Hujer A, Hulten E, Bajaksouzian S, Adams J, Donskey C, et al. "Analysis of Antibiotic Resistance Genes in Multidrug-Resistant Acinetobacter sp. Isolates from Military and Civilian Patients treated at the Walter Reed Army Medical Center." Antimicrob. Agents Chemother. 2006; 50(12): 4114-23. [DOI:10.1128/AAC.00778-06] [PMID]
17. Mohammad Alipour Z, Asadpour L, Ranji N. Fluoroquinolone resistance and mutation in gyrA gene in clinical isolates of Klebsiella pnemoniae. Iran J Med Microbiol 2016;10(5): 31-7.
18. Fallah F, Taherpour A, Hakemi Vala MH, Hashemi A. Global spread of New Delhi Mettallo - beta - lactamase -1 (NDM -1) Archives of Clinical Infectious Diseases. 2012; 6(4):177-171.
19. Chander Y, Ramakrishnan M, Jindal N, Hanson K, Goyal SM. Differentiation of Klebsiella pneumoniae and K.oxytoca by multiplex polymerase chain reaction. International Journal of Applied Research inVeterinary Medicine. 2011;9(2):138.
20. Conejo MC, Domínguez MC, López-Cerero L, Serrano L, Rodríguez-Baño J, Pascual A. Isolation of multidrug-resistant Klebsiella oxytoca carrying bla IMP-8, associated with OXY hyperproduction, in the intensive care unit of a community hospital in Spain. Journal of antimicrobial chemotherapy. 2010;3-1071: 65(5). [DOI:10.1093/jac/dkq063] [PMID]
21. Mahmood A, Al Hakawati MI. Non-beta-lactam Antimicrobials versus Extended Spectrum Beta-lactamase Producing Gram Negative Bacteria: In vitro Susceptibility Study. Infect Dis Soc of Pak. 2011;43(5): 507-11.
22. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D, et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proceedings of the National Academy of Sciences. 2015;112(27): E3574-E81. [DOI:10.1073/pnas.1501049112] [PMID]
23. Ahanjan M, Naderi F, Solimanii A. Prevalence of Beta-lactamases genes and antibiotic resistance pattern of Klebsiella pneumoniae isolated from teaching hospitals, Sari, Iran, 2014. J Mazandaran Univ Med Sci 2017; 27 (149):79-87 (Persian).
24. Hashemi A, Fallah F, Taherpour A, Goudarzi H, Erfanimanesh S, Taki E. Evaluation of genetic pattern and determination of oqxA gene expression levels among clinical isolates of Klebsiella pneumoniae strains. Journal of Mazandaran University of Medical Sciences. 2014;24(119):48-61.
25. Pourali Sheshblouki G, Mardaneh J, Hosseinzadeh Z. Klebsiella pneumoniae Infections in Hospitalized Patients: Characterization of Antibiotic Cross-resistance and Detection of Cefepime Susceptible-dose Dependent (SDD) Strains. J Fasa Univ Med Sci 2016;6(1): 52-9.
26. Shivaee A, Meskini M, Shahbazi Sh, Hasani D, Masjedian Jazi F, Zargar M. Prevalence of flmA, flmH, mrkA, ecpA, and mrkD virulence genes affecting biofilm formation in clinical isolates of K. pneumonia. Feyz, Journal of Kashan University of Medical Sciences. 2019; 23, (2): 168-176.
27. Norouzi A, Azizi O, Hosseini H, Shakibaie S, Shakibaie Mr. Amino acid substitution mutations analysis of gyrA and parC genes in clonal lineage of Klebsiella pneumoniae conferring high-level quinolone resistance. J Med Microbiol Infectious Diseases 2014;2(3): 109-17.
28. Mohammad Alipor AH, Shams F, Aghazadeh M. Assessment of epsilometer test over 3 molecular detection for quinolone resistance in Escherichia coli and Klebsiella pneumoniae clinical isolates: A predictable schedaule on routine basis. Life Sci J 2014;11(12s): 1027-31.
29. Minarini LA, Darini ALC. Mutations in the quinolone resistance-determining regions of gyrA and parC in Enterobacteriaceae isolates from Brazil. Braz J Microbiol. 2012 Oct;43(4):1309-14. [DOI:10.1590/S1517-83822012000400010] [PMID]
30. Brisse S, Verhoef J. Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. Int J Syst Evol Microbiol 2001;51(Pt 3):915-24. [DOI:10.1099/00207713-51-3-915] [PMID]
31. Piekarska K, Wolkowicz T, Zacharczuk K, Rzeczkowska M, Chrost A, Bareja E, et al. Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in a tertiary hospital in Warsaw, Poland. Int J Antimicrob Agents 2015;45(3):238-43. [DOI:10.1016/j.ijantimicag.2014.09.019] [PMID]
32. Park KS, Yang HS, Nam YS, Lee HJ. Mutations in DNA Gyrase and Topoisomerase IV in Ciprofloxacin-Nonsusceptible Extended-Spectrum -Lactamase-Producing Escherichia coli and Klebsiella pneumoniae. Clin lab 2017;63(3): 535-41. [DOI:10.7754/Clin.Lab.2016.160924] [PMID]
33. Chen FJ, Lauderdale TL, Ho M, Lo HJ. The roles of mutations in gyrA, parC, and ompK35 in fluoroquinolone resistance in Klebsiella pneumoniae. Microb Drug Resist. 2003;9(3):265-71. [DOI:10.1089/107662903322286472] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc