year 13, Issue 3 (July - August 2019)                   Iran J Med Microbiol 2019, 13(3): 164-174 | Back to browse issues page

XML Persian Abstract Print

1- Department of Microbiology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
2- Department of Clinical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,
Abstract:   (4370 Views)
Background and Aims: The type IV Pilin is an important colonization factor for opportunistic pathogens of Pseudomonas aeruginosa, which plays a role in the formation of biofilms and binding to the host cells. Each type of Pilin is coded with a particular auxiliary gene. This specific relationship can be used as a therapeutic target for detecting P. aeruginosa strains as well as its molecular classification. The purpose of this study was to evaluate the frequency of different types of auxiliary genes in cystic fibrosis, burns, and environmental samples.
Materials and Methods: Pseudomonas aeruginosa samples were collected from patients with cystic fibrosis, burns as well as environmental wastewaters during 2016-2017. Samples were cultured and identified using standard microbial and biochemical methods. DNA extraction was performed by boiling and PCR was performed through specific primers.
Results: Totally, 90 isolates of P. aeruginosa samples (35 environmental, 30 burns, and 25 cystic fibrosis) were examined. tfpO and tfpZ were positive in 71 and 2 isolates, respectively.
Conclusion: The results indicated that Pseudomonas aeruginosa Pilin types are very diverse. Regardless of the source of the samples, the most common tfp was tfpO. Taking into account the fact that tfpZ was found only in burns, it can be assumed that this particular type may appear in severe clinical conditions. Ultimately, larger statistical population and use of more comprehensive typing methods is suggested for better results.
Full-Text [PDF 887 kb]   (1809 Downloads) |   |   Full-Text (HTML)  (1499 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2019/05/14 | Accepted: 2019/08/24 | ePublished: 2019/11/22

1. McCallum M, Tammam S, Little DJ, Robinson H, Koo J, Shah M, et al. PilN Binding Modulates the Structure and Binding Partners of the Pseudomonas aeruginosa Type IVa Pilus Protein PilM. Journal of biological Chemistry. 2016: 291, 11003-11015. [DOI:10.1074/jbc.M116.718353] [PMID] [PMCID]
2. Buensuceso RN, Daniel-Ivad M, Kilmury SL, Leighton TL, Harvey H, Howell PL, et al. Cyclic AMP-Independent Control of Twitching Motility in Pseudomonas aeruginosa. Journal of bacteriology. 2017; 199(16):e00188-17. [DOI:10.1128/JB.00188-17] [PMID] [PMCID]
3. Ortega DR, Fleetwood AD, Krell T, Harwood CS, Jensen GJ, Zhulin IB. Assigning chemoreceptors to chemosensory pathways in Pseudomonas aeruginosa. PNAS. 2017: 114 (48) 12809-12814. [DOI:10.1073/pnas.1708842114] [PMID] [PMCID]
4. Gold VA, Salzer R, Averhoff B, Kühlbrandt W. Structure of a type IV pilus machinery in the open and closed state. Elife. 2015; 4:e07380. [DOI:10.7554/eLife.07380] [PMID] [PMCID]
5. Leighton TL, Mok MC, Junop MS, Howell PL, Burrows LL. Conserved, unstructured regions in Pseudomonas aeruginosa PilO are important for type IVa pilus function. Scientific reports. 2018; 8:2600. [DOI:10.1038/s41598-018-20925-w] [PMID] [PMCID]
6. Tan RM, Kuang Z, Hao Y, Lee F, Lee T, Lee RJ, Lau GW. Type IV Pilus Glycosylation Mediates Resistance of Pseudomonas aeruginosa to Opsonic Activities of the Pulmonary Surfactant Protein A. Infection and Immunity 2015; 83(4): 1339-46. [DOI:10.1128/IAI.02874-14] [PMID] [PMCID]
7. Kus JV, Tullis E, Cvitkovitch DG, Burrows LL. Significant differences in type IV pilinallele distribution among Pseudomonas aeruginosa isolates from cystic fibrosis (CF) versus non-CF patients. Microbiology. 2004;150(Pt 5):1315-26. [DOI:10.1099/mic.0.26822-0] [PMID]
8. Smedley JG, 3rd, Jewell E, Roguskie J, Horzempa J, Syboldt A, Stolz DB, et al. Influence of pilin glycosylation on Pseudomonas aeruginosa 1244 pilus function. Infection and immunity. 2005;73(12):7922-31. [DOI:10.1128/IAI.73.12.7922-7931.2005] [PMID] [PMCID]
9. Asikyan ML, Kus JV, Burrows LL. Novel proteins that modulate type IV pilus retractiondynamics in Pseudomonas aeruginosa. Journal of bacteriology. 2008;190(21):7022-34. [DOI:10.1128/JB.00938-08] [PMID] [PMCID]
10. Saderi H, Lotfalipour H, Owlia P, Salimi H. Detection of Metallo-β-Lactamase producing pseudomonas aeruginosa isolated from burn patients in Tehran, Iran. Lab Medicine. 2010;41(10):609-12. [DOI:10.1309/LMQJF9J3T2OAACDJ]
11. Ranjbar R, Owlia P, Saderi H, Mansouri S, Jonaidi-Jafari N, Izadi M, et al. Characterization of Pseudomonas aeruginosa strains isolated from burned patients hospitalized in a major burn center in Tehran, Iran. Acta Medica Iranica. 2011;49(10):675-9.
12. Boujari Nasrabadi MR, Hajia M. Multidrug-resistant Pseudomonas aeruginosa strains in Tehran Reference Burn Hospital, Tehran, Iran. African Journal of Microbiology Research 2012; 6(7):1393-6. [DOI:10.5897/AJMR11.1048]
13. Cohen-Cymberknoh M, Gilead N, Gartner S, Rovira S, Blau H, Mussaffi H, et al. Eradication failure of newly acquired Pseudomonas aeruginosa isolates in cystic fibrosis. Journal of Cystic Fibrosis. 2016: 15(6): 776-782. [DOI:10.1016/j.jcf.2016.04.006] [PMID]
14. Schwartz T, Volkmann H, Kirchen S, Kohnen W, Schon-Holz K, Jansen B, et al. Real-time PCR detection of Pseudomonas aeruginosa in clinical and municipal wastewater and genotyping of the ciprofloxacin-resistant isolates. FEMS microbiology ecology. 2006; 57(1):158-67. [DOI:10.1111/j.1574-6941.2006.00100.x] [PMID]
15. Basso P, Ragno M, Elsen S, Reboud E, Golovkine G, Bouillot S, et al. Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis. American society for microbiology. 2017; 8(1): e02250-16. [DOI:10.1128/mBio.02250-16] [PMID] [PMCID]
16. Streeter K, Katouli M. Pseudomonas aeruginosa: A review of their Pathogenesis and Prevalence in Clinical Settings and the Environment. Infect Epidemiol Med. 2016; 2(1): 25-32. DOI: 10.18869/m odares.iem.2.1.25 [DOI:10.18869/modares.iem.2.1.25]
17. Allison TM, Conrad S, Castric P. The group I pilin glycan affects type IVa pilus hydrophobicity and twitching motility in Pseudomonas aeruginosa 1244. Microbiology. 2015; 161(9): 1780-1789. [DOI:10.1099/mic.0.000128] [PMID] [PMCID]
18. Kus J. Diversity of Pseudomonas aeruginosa type IV pilins and identification of a novel D-arabinofuranose post-translational modification. 2008. (Doctoral dissertation).
19. Deligianni E, Pattison S, Berrar D, Ternan NG, Haylock RW, Moore JE, et al. Pseudomonas aeruginosa Cystic Fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiology. 2010; 10(38): 1471-2180. [DOI:10.1186/1471-2180-10-38] [PMID] [PMCID]
20. Pirnay JP, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, et al. Pseudomonas aeruginosa population structure revisited. PLoS ONE. 2009; 4(11): e7740. [DOI:10.1371/journal.pone.0007740] [PMID] [PMCID]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.