year 1, Issue 1 (Spring 2007)                   Iran J Med Microbiol 2007, 1(1): 55-60 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mirsalehian A, Razavi S M, Ziaei H, Bamdad K, Mirafshar S M, Bazarjani F. Titration of specific antibodies to Mycoplasma pneuomoniae, Chlamydia pneumoniae andLegionella pneumophila among Iranian pilgrims' sera during Hajj seasonin 2004. Iran J Med Microbiol 2007; 1 (1) :55-60
URL: http://ijmm.ir/article-1-74-en.html
1- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences
2- Department of Ophthalmology, School of Medicine, Shahid Beheshti University of Medical Sciences
Abstract:   (15005 Views)
Background and objectives: Respiratory tract infection is the most common diseases among Iranian pilgrims during Hajj season. To understand the possibility of bacterial involvement in such infections, we screened the pilgrims’ sera to determine the titer of antibodies against Mycoplasma pneuomoniae (MP), Chlamydia pneumoniae (CP) and Legionella pneumophila (LP).
Material and Method: Serum samples from 128 pilgrims were collected, before the trip and one month after returning home. Antibodies to MP, CP, LP were assayed using Immunoflourecent and ELISA methods.
Results: IgM antibody titre to CP did not elevated, but IgG antibody titer was increased in 34.58% (n=48) and 15.82% (n=22) of cases, indicating of recent infection. The specific antibodies to MP and LP were not increased.
Conclusion: In pilgrims infected with an atypical respiratory pathogen, C. pneumoniae should be considered as an important causative. The true prevalence of thispathogen should be investigated since it relies on the sensitivity and specificity of currently available diagnostic methods.
Full-Text [PDF 143 kb]   (3406 Downloads)    
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2013/11/10 | Accepted: 2013/11/10 | ePublished: 2013/11/10

References
1. Shattat GF. A review article on hyperlipidemia: types, treatments and new drug targets. Biomed Pharmacol J. 2015;7:399-409. [DOI:10.13005/bpj/504]
2. Howard Alpe G, Sear J, Foex P. Methods of detecting atherosclerosis in non-cardiac surgical patients; the role of biochemical markers. Br J Anaesth. 2006; 97: 758-69. [DOI:10.1093/bja/ael303] [PMID]
3. Navab M, Ananthramaiah G, Reddy ST, et al. Thematic review series: the pathogenesis of atherosclerosis the oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004; 45: 993-1007. [DOI:10.1194/jlr.R400001-JLR200] [PMID]
4. Schulz E, Anter E, Keaney J, John F. Oxidative stress, antioxidants, and endothelial function. Curr Med Chem. 2004; 11: 1093-104. [DOI:10.2174/0929867043365369] [PMID]
5. Peluso I, Morabito G, Urban L, Ioannone F, Serafi M. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocr Metab Immune Disord Drug Targets. 2012; 12: 351-60. [DOI:10.2174/187153012803832602] [PMID]
6. Dhaliya S, Surya A, Dawn V, Betty C, Arun K, Sunil C. A review of hyperlipidemia and medicinal plants. Int JA PS BMS. 2013; 2: 219-37.
7. Gernandt DS, López GG, García SO, Liston A. Phylogeny and classification of Pinus. Taxon. 2005; 54: 29-42. [DOI:10.2307/25065300]
8. Zargary A. Medicinal plants )5th ed(. Tehran: Tehran University Press; 1996: 9-12.
9. Mamedov N, Gardner Z, Craker LE. Medicinal plants used in Russia and Central Asia for the treatment of selected skin conditions. J Herbs Spices Med Plants. 2005; 11: 191-222. [DOI:10.1300/J044v11n01_07]
10. Mamedov N, Craker LE. Medicinal plants used for the treatment of bronchial asthma in Russia and Central Asia. J Herbs Spices Med Plants. 2001; 8: 91-117. [DOI:10.1300/J044v08n02_03]
11. Mehrzadi S, Ghaznavi H, Tajallizadehkhoob Y, Fakhrzadeh H. Effects of Pinus eldarica Medw. nut extract on blood glucose and cholesterol levels in hypercholesterolemic alloxan-induced diabetic rats. J Med Plants. 2013; 1: 68-74.
12. Huseini HF, Anvari MS, Khoob YT, et al. Anti-hyperlipidemic and anti-atherosclerotic effects of Pinus eldarica Medw. nut in hypercholesterolemic rabbits. Daru. 2015; 23:32. [DOI:10.1186/s40199-015-0114-9] [PMID] [PMCID]
13. Hosseinzadeh H, Khooei AR, Khashayarmanesh Z, Motamed-Shariaty V. Antiurolithiatic activity of Pinus eldarica medw: fruits aqueous extract in rats. Urol J. 2010; 7: 232-7.
14. Babaee F, Safaeian L, Zolfaghari B, Haghjoo Javanmard S. Cytoprotective effect of hydroalcoholic extract of Pinus eldarica bark against H2O2-induced oxidative stress in human endothelial cells. Iran Biomed J. 2016; 20: 161-7. [DOI:10.4103/1735-5362.192488] [PMID] [PMCID]
15. Iravani S, Zolfaghari B. Phytochemical analysis of Pinus eldarica bark. Res Pharm Sci. 2014; 9: 243-50.
16. Yegdaneh A, Ghannadi A, Dayani L. Chemical constituents and biological activities of two Iranian Cystoseira species. Res Pharm Sci. 2016; 11: 311-7. [DOI:10.4103/1735-5362.189307] [PMID] [PMCID]
17. Wolff SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 1994; 233: 182-9. [DOI:10.1016/S0076-6879(94)33021-2]
18. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996; 239: 70-6. [DOI:10.1006/abio.1996.0292] [PMID]
19. Kumar VR, Inamdar MN, Nayeemunnisa, Viswanatha GL. Protective effect of lemongrass oil against dexamethasone induced hyperlipidemia in rats: possible role of decreased lecithin cholesterol acetyl transferase activity. Asian Pac J Trop Med. 2011; 4: 658-60. [DOI:10.1016/S1995-7645(11)60167-3]
20. Mesripour A, Iyer A, Brown L. Mineralocorticoid receptors mediate cardiac remodelling in morphine-dependent rats. Basic Clin Pharmacol Toxicol. 2012; 111: 75-80. [DOI:10.1111/j.1742-7843.2012.00860.x] [PMID]
21. Bera S, Greiner S, Choudhury A, et al. Dexamethasone-induced oxidative stress enhances myeloma cell radiosensitization while sparing normal bone marrow hematopoiesis. Neoplasia. 2010; 12: 980-92. [DOI:10.1593/neo.101146] [PMID] [PMCID]
22. Pragda SS, Kuppast I, Mankani K, Ramesh L. Evaluation of antihyperlipidemic activity of leaves of Portulaca oleracea Linn against dexamethasone induced hyperlipidemia in rats. Int J Pharm Pharm Sci. 2012; 4: 279-83.
23. Bargi R, Asgharzadehyazdi F, BeheshtI F, et al. The effects of hydroalcoholic extract of Pinus eldarica on hippocampal tissue oxidative damage in pentylenetetrazole-induced seizures in rat. Curr Nutr Food Sci. 2017; 13: 50-6. [DOI:10.2174/1573401312666161017142930]
24. Sadeghi Afjeh M, Fallah Huseini H, Tajalizadekhoob Y, Mirarefin M, Taheri E, Saeednia S. Determination of phenolic compounds in Pinus eldarica by HPLC. J Med Plants. 2014; 13: 22-33. [DOI:10.1055/s-0033-1352259]
25. Joo HE, Lee HJ, Sohn EJ, et al. Anti-diabetic potential of the essential oil of Pinus koraiensis leaves toward streptozotocin-treated mice and HIT-T15 pancreatic beta cells. Biosci Biotechnol Biochem. 2013; 77: 1997-2001. [DOI:10.1271/bbb.130254] [PMID]
26. Liu X, Wei J, Tan F, Zhou S, Wurthwein G, Rohdewald P. Antidiabetic effect of pycnogenol French maritime pine bark extract in patients with diabetes type II. Life Sci. 2004; 75: 2505-13. [DOI:10.1016/j.lfs.2003.10.043] [PMID]
27. Kaushik P, Khokra S, Kaushik D. Evaluation of antidiabetic potential of Pinus roxburghii bark extract in alloxan induced diabetic rats. J Pharmacogn Nat Prod. 2015;1: 2-5. [DOI:10.4172/2472-0992.1000105]
28. El-Manawaty M, Gohar L. In vitro alpha-glucosidase inhibitory activity of Egyptian plant extracts as an indication for their antidiabetic activity. In Vitro. 2018; 11: 360-7. [DOI:10.22159/ajpcr.2018.v11i7.25856]
29. Devaraj S, Vega-Lopez S, Kaul N, Schonlau F, Rohdewald P, Jialal I. Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile. Lipids. 2002; 37: 931-4. [DOI:10.1007/s11745-006-0982-3] [PMID]
30. Durackova Z, Trebaticky B, Novotny V, Zitnanova I, Breza J. Lipid metabolism and erectile function improvement by pycnogenol®, extract from the bark of pinus pinaster in patients suffering from erectile dysfunction-a pilot study. Nutr Res. 2003; 23: 1189-98. [DOI:10.1016/S0271-5317(03)00126-X]
31. Kim JH, Lee HJ, Jeong SJ, Lee MH, Kim SH. Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase. Phytother Res. 2012; 26: 1314-19. [DOI:10.1002/ptr.3734] [PMID]
32. Samavat H, Newman AR, Wang R, Yuan JM, Wu AH, Kurzer MS. Effects of green tea catechin extract on serum lipids in postmenopausal women: a randomized, placebo-controlled clinical trial. Am J Clin Nutr. 2016; 104: 1671-82. [DOI:10.3945/ajcn.116.137075] [PMID] [PMCID]
33. Kim A, Nam YJ, Lee CS. Taxifolin reduces the cholesterol oxidation product-induced neuronal apoptosis by suppressing the Akt and NF-kappaB activation-mediated cell death. Brain Res Bull. 2017; 134: 63-71. [DOI:10.1016/j.brainresbull.2017.07.008] [PMID]
34. Theriault A, Wang Q, Van Iderstine SC, Chen B, Franke AA, Adeli K. Modulation of hepatic lipoprotein synthesis and secretion by taxifolin, a plant flavonoid. J Lipid Res. 2000; 41: 1969-79.
35. Huang DW, Shen SC, Wu JS. Effects of caffeic acid and cinnamic acid on glucose uptake in insulin-resistant mouse hepatocytes. J Agric Food Chem. 2009; 57: 7687-92. [DOI:10.1021/jf901376x] [PMID]
36. Liao CC, Ou TT, Wu CH, Wang CJ. Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. J Agric Food Chem. 2013; 61: 11082-8. [DOI:10.1021/jf4026647] [PMID]
37. Naowaboot J, Piyabhan P, Munkong N, Parklak W, Pannangpetch P. Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice. Clin Exp Pharmacol Physiol. 2016; 43: 242-50. [DOI:10.1111/1440-1681.12514] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc