year 19, Issue 4 (July - August 2025)                   Iran J Med Microbiol 2025, 19(4): 220-229 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Sukmawati S, Bin Zakariah M I, Ratna R, Radjawane C, Amalia Azka F, Azman Kasan N. Characterization of Bacteriocins Based on Amino Acid Composition and Molecular Weight. Iran J Med Microbiol 2025; 19 (4) :220-229
URL: http://ijmm.ir/article-1-2833-en.html
1- Department of Fishery Product Processing, Faculty of Fishery, Universitas Muhammadiyah Sorong, Sorong, Indonesia , sukmawati.unamin@um-sorong.ac.id
2- Higher Instituition Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu (UMT), Terengganu, Malaysia
3- Department of Fishery Resource Management, Faculty of Fisheries, Universitas Muhammadiyah Sorong, Sorong, Indonesia
4- Department of Fishery Product Processing, Faculty of Fishery, Universitas Muhammadiyah Sorong, Sorong, Indonesia
Abstract:   (340 Views)

Background and Aims: Bacteriocins are antimicrobial peptides produced by bacteria that hold great potential as natural preservatives and bioactive compounds. This study aimed to characterize bacteriocins produced by Bacillus paramycoides strain MCCC 1A04098 (BSH1), Bacillus albus strain MCCC 1A02146 (BSH2), and Bacillus cereus strain IAM 12605 (BSH3), isolated from cincalok, a traditional fermented shrimp product.
Materials and Methods: High-performance liquid chromatography (HPLC) was used to analyze amino acid profiles, and sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) was employed to determine molecular weights. 
Results: Bacteriocins from BSH1, BSH2, and BSH3 had molecular weights of 55.02 kDa, 51.15 kDa, and 50.12 kDa, respectively, classifying them as class III bacteriocins (>30 kDa). Amino acid analysis revealed the dominance of L-cystine (33–45%) and L-proline (9–20%), along with notable amounts of glutamic acid and leucine. These amino acids are essential for structural stability and antimicrobial activity.
Conclusion: The findings suggest that bacteriocins derived from cincalok not only broaden the understanding of bacteriocin diversity from local fermented foods but also demonstrate strong potential as natural antimicrobial agents for applications in food preservation and healthcare industries.

     
Type of Study: Original Research Article | Subject: Food Microbiology
Received: 2025/08/2 | Accepted: 2025/09/23 | ePublished: 2025/10/10

References
1. Zhao PH, Cai JW, Li Y, Li QH, Niu MM, Meng XC, et al. An insight into structure-activity relationships in subclass IIb bacteriocins: Plantaricin EvF. Int J Biol Macromol. 2024;278:134656. [DOI:10.1016/j.ijbiomac.2024.134656] [PMID]
2. Yang SC, Lin CH, Sung CT, Fang JY. Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Front Microbiol. 2014;5:241. [DOI:10.3389/fmicb.2014.00241]
3. Antoshina DV, Balandin SV, Ovchinnikova TV. Structural features, mechanisms of action, and prospects for practical application of class II bacteriocins. Biochemistry (Moscow). 2022;87(11):1387-1403. [DOI:10.1134/S0006297922110165] [PMID]
4. Cui M, Wang M, Sun H, Yu L, Su Z, Zhang X, et al. Identifying and characterization of novel broad-spectrum bacteriocins from the Shanxi aged vinegar microbiome: Machine learning, molecular simulation, and activity validation. Int J Biol Macromol. 2024;270:132272. [DOI:10.1016/j.ijbiomac.2024.132272] [PMID]
5. Thuy TTD, Lu HF, Bregente CJB, Huang FCA, Tu PC, Kao CY. Characterization of the broad-spectrum antibacterial activity of bacteriocin-like inhibitory substance-producing probiotics isolated from fermented foods. BMC Microbiol. 2024;24(1):85. [DOI:10.1186/s12866-024-03245-0] [PMID] [PMCID]
6. Phrutpoom N, Khaokhiew T, Linn AK, Sakdee S, Imtong C, Jongruja N, et al Efficient production and purification of bioactive E50-52-class IIa peptidic bacteriocin is achieved through fusion with the catalytic domain of lysostaphin-class III bacteriocin. Biochemistry (Moscow). 2024;89(9):1610-1618. [DOI:10.1134/S0006297924090074] [PMID]
7. Xue X, Gao Y, Liu F, Du P, Li C, Liu Y, et al. Purification, characterization, and identification of a novel bacteriocin produced by Lacticaseibacillus casei KLS1, and its antimicrobial mechanism against Staphylococcus aureus. LWT. 2024;200:116207. [DOI:10.1016/j.lwt.2024.116207]
8. Sukmawati S, Sipriyadi S, Rosalina F, Ratna R, Dewi NK, Zakariah MIB. Identification of 16S rRNA genes in bacteriocin-producing bacteria. Biodiversitas. 2024;25(10):3720-7. [DOI:10.13057/biodiv/d251034]
9. Sukmawati S, Sipriyadi S, Yunita M, Dewi NK, Noya ED. Analysis of bacteriocins of lactic acid bacteria isolated from fermentation of rebon shrimp (Acetes sp.) in South Sorong, Indonesia as antibacterial agents. Biodiversitas. 2022;23(7):3852-9. [DOI:10.13057/biodiv/d230763]
10. Singh B, Mal G, Kalra RS, Marotta F. Bacteriocins and antimicrobial peptides. In: Probiotics as Live Biotherapeutics for Veterinary and Human Health, Volume 2: Functional Foods and Post-Genomics. Cham: Springer; 2024. pp.593-629. [DOI:10.1007/978-3-031-65459-6_27] [PMCID]
11. Hoover DG, Steenson LR, editors. Bacteriocins of lactic acid bacteria. 2014. San Diego, United State: Academic Press.
12. Srivastava N, Singh A, Kumari P, Nishad JH, Gautam VS, Yadav M, et al. Advances in extraction technologies: Isolation and purification of bioactive compounds from biological materials. In: Natural Bioactive Compounds. 2021. pp.409-33. San Diego, United State: Academic Press. [DOI:10.1016/B978-0-12-820655-3.00021-5]
13. Wang H, Ke B, Wang W, Guo J, Ying W, Ma S, et al. A novel method for the component identification of human blood products: Mass spectrometric analysis of human fibrinogen digested after SDS-PAGE in-gel digestion. J Chromatogr B. 2023;1226:123718. [DOI:10.1016/j.jchromb.2023.123718] [PMID]
14. Wang D, Greenwood P, Klein MS. A protein‐free chemically defined medium for the cultivation of various micro‐organisms with food safety significance. J Appl Microbiol. 2021;131(2):844-54. [DOI:10.1111/jam.15005] [PMID]
15. Qiao M, Xu Z, Wang J, Cui X, Fang Y, Liu J, et al. Flexusin A: A novel circular bacteriocin from Bacillus flexus R29-2 with potent antimicrobial activity and thermal stability. Mar Drugs. 2025;23(3):95. [DOI:10.3390/md23030095] [PMID] [PMCID]
16. Johny LC, Kumar BG, Rao SA, Suresh PV. Anti-listerial peptides from a marine Bacillus velezensis FTL7: production optimization, characterizations and molecular docking studies. 3 Biotech. 2024;14(4):105. [DOI:10.1007/s13205-024-03944-5] [PMID] [PMCID]
17. Budhwani Z, Buragina JT, Lang J, Acedo JZ. Characterization of the novel leaderless bacteriocin, Bawcin, from Bacillus wiedmannii. Int J Mol Sci. 2023;24(23):16965. [DOI:10.3390/ijms242316965] [PMID] [PMCID]
18. Garretto A. Bacteriocin prevalence and resistance in a clinical E. faecium cohort: Rise of the class IIa bacteriocin Bac43 [dissertation]. 2025.
19. Madhushan KWA, Wickramasinghe WMDM, Herath HMAM, Madushani MA, Nethma HH, Padmathilake KRE, et al. Microbial production of amino acids and peptides. In: Ravendra K, Santana de OM, Aguiar AEH, Chandra SD, Ravindra S, editors. Biorationals and Biopesticides. 2024. pp.295-334. Berlin, Boston: De Gruyter. [DOI:10.1515/9783111204819-015]
20. Sugrue I, Ross RP, Hill C. Bacteriocin diversity, function, discovery and application as antimicrobials. Nat Rev Microbiol. 2024;22(9):556-71. [DOI:10.1038/s41579-024-01045-x] [PMID] [PMCID]
21. Ibrahim F, Siddiqui NN, Aman A, Qader SAU, Ansari A. Characterization, cytotoxic analysis and action mechanism of antilisterial bacteriocin produced by Lactobacillus plantarum isolated from cheddar cheese. Int J Pept Res Ther. 2020;26(4):1751-64. [DOI:10.1007/s10989-019-09982-5]
22. Chen X, Liu H, Liu S, Mao J. Impact of bacteriocins on multidrug‐resistant bacteria and their application in aquaculture disease prevention and control. Rev Aquac. 2024;16(3):1286-1307. [DOI:10.1111/raq.12897]
23. Yang E, Fan L, Jiang Y, Doucette C, Fillmore S. Antimicrobial activity of bacteriocin-producing lactic acid bacteria isolated from cheeses and yogurts. AMB Express. 2012;2(1):48. [DOI:10.1186/2191-0855-2-48] [PMID] [PMCID]
24. Ayed HB, Maalej H, Hmidet N, Nasri M. Isolation and biochemical characterisation of a bacteriocin-like substance produced by Bacillus amyloliquefaciens An6. J Glob Antimicrob Resist. 2015;3(4):255-61. [DOI:10.1016/j.jgar.2015.07.001] [PMID]
25. Li Y, Ma H, Pan R, Long Y, Zhao Y, Yu M, et al. Optimisation of cultivation conditions for Bacillus velezensis G7 from mangrove plants and exploration of potential bacteriocins. Front Pharmacol. 2025;16:1530043. [DOI:10.3389/fphar.2025.1530043] [PMID] [PMCID]
26. Kamilari E, O'Connor PM, Farias FMD, Johnson CN, Buttimer C, Deliephan A, et al. Bacillus safensis APC 4099 has broad-spectrum antimicrobial activity against both bacteria and fungi and produces several antimicrobial peptides, including the novel circular bacteriocin safencin E. Appl Environ Microbiol. 2025;91(1):e01942-24. [DOI:10.1128/aem.01942-24] [PMID] [PMCID]
27. Chandrika K, Sachan A. Enhanced production of bacteriocin by Bacillus subtilis ZY05. 3 Biotech. 2024;14(2):37. [DOI:10.1007/s13205-023-03883-7] [PMID] [PMCID]
28. Aldarhami A. Identification of novel bacteriocin against Staphylococcus and Bacillus species. Int J Health Sci. 2023;17(5):15.
29. Anyairo CS, Unban K, Shetty K, Khanongnuch C. Bacteriocin producing Bacillus and their potential applications in fish farming. Int Aquat Res. 2024;16(1):17.
30. Peng J, Xie X, Fan T, Ma H, Li Y, Luo S, et al. Optimization of culture conditions for endophytic bacteria in mangrove plants and isolation and identification of bacteriocin. Front Pharmacol. 2024;15:1429423. [DOI:10.3389/fphar.2024.1429423] [PMID] [PMCID]
31. Shuai Y, Langbo Y, Yi Y, Danni C, Qingzhong P. Purification and expression of a novel bacteriocin, JUQZ-1, against Pseudomonas syringae pv. Actinidiae (PSA), secreted by Brevibacillus laterosporus Wq-1, isolated from the rhizosphere soil of healthy kiwifruit. Front Microbiol. 2025;15:1477320. [DOI:10.3389/fmicb.2024.1477320] [PMID] [PMCID]
32. Budhwani H, Mangi M, Jones R, Mangalea M, Salido MM, Umeria K, et al. Discovery and characterization of a novel leaderless bacteriocin, Bawcin, from Bacillus wiedmannii. Int J Mol Sci. 2023;24(23):16965. [DOI:10.3390/ijms242316965] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.