year 19, Issue 5 (September - October 2025)                   Iran J Med Microbiol 2025, 19(5): 291-306 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Jayasena S, Ediriweera M K, Udukumbura C. Environmental Drivers of Antimicrobial Resistance and Strategies for Mitigation. Iran J Med Microbiol 2025; 19 (5) :291-306
URL: http://ijmm.ir/article-1-2703-en.html
1- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
2- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka , meran@bmb.cmb.ac.lk
Abstract:   (373 Views)

The spread of antibiotic resistance among pathogenic bacteria has reached a critical point, with the emergence of resistant strains for the last line antibiotics, alongside a dwindling discovery pipeline for novel antimicrobials. This review aimed to highlight the dual role of the environment in the development of antimicrobial resistance as well as the source for the discovery of novel antimicrobials. Microorganisms live in heterogeneous communities and competition for the survival applies evolutionary pressure to both antimicrobial metabolites production and tolerance development. Exposure to environmental chemicals, either naturally occurring or due to anthropogenic activities, also leads to the development of tolerance mechanisms. Further, antimicrobial resistance genes, which attain mobility during evolution, may be transferred to other species through horizontal gene transfer. While overuse and misuse of antibiotics is identified as a key agent for antimicrobial resistance, we should take in consideration that resistance mechanisms were present in the environment long before their discovery. The biosynthetic capacity of microorganisms for secondary metabolites far exceeds what has been characterized so far. Similarly, mechanisms for tolerance and resistance for these natural antibiotics may still be awaiting discovery. Future challenges lie in the discovery of novel antibiotic classes for which tolerance mechanisms have not yet been transferred to clinical strains. Novel strategies, guided by genomics and computational methods, will accelerate antibiotic discovery. 

     
Type of Study: Systematic Review | Subject: Antibiotic Resistance
Received: 2025/06/12 | Accepted: 2025/10/4 | ePublished: 2025/11/11

References
1. O'Neill J. Antimicrobial Resistance: Tackling a crisis for the health and wealth of nations. Rev Antimicrob Resist. 2014;2014.
2. World Health Organization (WHO). Global action plan on antimicrobial resistance. Microbe Magazine. 2015;10(9):354-5.
3. Miller WR, Arias CA. ESKAPE pathogens: antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat Rev Microbiol. 2024;22(10):598-616. [DOI:10.1038/s41579-024-01054-w] [PMID]
4. Chin KL, Anibarro L, Chang ZY, Palasuberniam P, Mustapha ZA, Sarmiento ME, et al. Impacts of MDR/XDR-TB on the global tuberculosis epidemic: Challenges and opportunities. Curr Res Microb Sci. 2024;7:100295. [DOI:10.1016/j.crmicr.2024.100295] [PMID] [PMCID]
5. Sun J, Chen C, Cui CY, Zhang Y, Liu X, Cui ZH, et al. Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli. Nat Microbiol. 2019;4(9):1457-64. [DOI:10.1038/s41564-019-0496-4] [PMID] [PMCID]
6. Caldera JR, Shaw B, Uslan DZ, Yang S. Cluster of extensively drug-resistant Shigella sonnei carrying bla(CTX-M-15) in Los Angeles, California, 2023 to 2024. Am J Infect Control. 2025;53(4):524-6. [DOI:10.1016/j.ajic.2024.12.005] [PMID]
7. Liu H, Moran RA, Doughty EL, Hua X, Snaith AE, Zhang L, et al. Longitudinal genomics reveals carbapenem-resistant Acinetobacter baumannii population changes with emergence of highly resistant ST164 clone. Nat Commun. 2024;15(1):9483. [DOI:10.1038/s41467-024-53817-x] [PMID] [PMCID]
8. Nyamngee A, Ikpe RT, Sulaiman MK. Prevalence of molecular markers associated with Plasmodium falciparum resistance to chloroquine and sulphadoxine/pyrimethamine in three malaria endemic local areas of Benue State, Nigeria. Pan Afr Med J. 2025;50:73. [DOI:10.11604/pamj.2025.50.73.45826] [PMID] [PMCID]
9. Aw DZH, Zhang DX, Vignuzzi M. Strategies and efforts in circumventing the emergence of antiviral resistance against conventional antivirals. NPJ Antimicrob Resist. 2025;3(1):54. [DOI:10.1038/s44259-025-00125-z] [PMID] [PMCID]
10. Larsson DJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20(5):257-69. [DOI:10.1038/s41579-021-00649-x] [PMID] [PMCID]
11. Ariyawansa S, Gunawardana KN, Hapudeniya MM, Manelgamage NJ, Karunarathne CR, Madalagama RP, et al. One Health Surveillance of Antimicrobial Use and Resistance: Challenges and Successes of Implementing Surveillance Programs in Sri Lanka. Antibiotics. 2023;12(3):446. [DOI:10.3390/antibiotics12030446] [PMID] [PMCID]
12. Sihombing B, Bhatia R, Srivastava R, Aditama TY, Laxminarayan R, Rijal S. Response to antimicrobial resistance in South-East Asia Region. Lancet Reg Health Southeast Asia. 2023;18. [DOI:10.1016/j.lansea.2023.100306] [PMID] [PMCID]
13. Taylor P, Reeder R. Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors. CABI Agric Biosci. 2020;1(1):1. [DOI:10.1186/s43170-020-00001-y]
14. Fleming A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference to their Use in the Isolation of B. influenzæ. Br J Exp Pathol. 1929;10(3):226-36.
15. Samreen, Ahmad I, Malak HA, Abulreesh HH. Environmental antimicrobial resistance and its drivers: a potential threat to public health. J Glob Antimicrob Resist. 2021;27:101-11. [DOI:10.1016/j.jgar.2021.08.001] [PMID]
16. Kashuba E, Dmitriev AA, Kamal SM, Melefors O, Griva G, Römling U, et al. Ancient permafrost staphylococci carry antibiotic resistance genes. Microb Ecol Health Dis. 2017;28(1):1345574. [DOI:10.1080/16512235.2017.1345574] [PMID] [PMCID]
17. Nawaz S, Rafiq M, Pepper IL, Betancourt WQ, Shah AA, Hasan F. Prevalence and abundance of antibiotic-resistant genes in culturable bacteria inhabiting a non-polar passu glacier, karakorum mountains range, Pakistan. World J Microbiol Biotechnol. 2023;39(4):94. [DOI:10.1007/s11274-023-03532-4] [PMID]
18. Núñez-Montero K, Barrientos L. Advances in Antarctic Research for Antimicrobial Discovery: A Comprehensive Narrative Review of Bacteria from Antarctic Environments as Potential Sources of Novel Antibiotic Compounds Against Human Pathogens and Microorganisms of Industrial Importance. Antibiotics. 2018;7(4):90. [DOI:10.3390/antibiotics7040090] [PMID] [PMCID]
19. Zhuang M, Achmon Y, Cao Y, Liang X, Chen L, Wang H, et al. Distribution of antibiotic resistance genes in the environment. Environ Pollut. 2021;285:117402. [DOI:10.1016/j.envpol.2021.117402] [PMID]
20. Wright GD. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol. 2007;5(3):175-86. [DOI:10.1038/nrmicro1614] [PMID]
21. Waksman SA, Albert S, inventors; Rutgers Research, Educational Foundation, assignee. Streptomycin and process of preparation. United States patent US 2,449,866. 1948.
22. Garneau-Tsodikova S, Labby KJ. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. MedChemComm. 2016;7(1):11-27. [DOI:10.1039/C5MD00344J] [PMID] [PMCID]
23. Ehrlich J, Bartz QR, Smith RM, Joslyn DA, Burkholder PR. Chloromycetin, a New Antibiotic From a Soil Actinomycete. Science. 1947;106(2757):417. [DOI:10.1126/science.106.2757.417] [PMID]
24. Ehrlich J, Smith RM, Penner MA, inventors; Parke Davis and Co LLC assignee. Process for the manufacture of chloramphenicol patent US2483892A. 1948. [https://patents.google.com/patent/US2483892A/en]
25. Duggar BM, inventor; American Cyanamid Company, assignee. Aureomycin and preparation of same patent US2482055A. 1948. [https://patents.google.com/patent/US2482055A/en]
26. Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics. Front Mol Biosci. 2018;5:48. [DOI:10.3389/fmolb.2018.00048] [PMID] [PMCID]
27. P'an SY, Halley TV, Reilly JC, Pekich AM. Viomycin: Acute and Chronic Toxicity in Experimental Animals. Amer Rev Tuberc. 1951;63(1):44-8.
28. Bunch RL, Mcguire JM, inventors; Eli Lilly and Company, assignee. Erythromycin, its salts, and method of preparation patent US2653899A. 1952. [https://patents.google.com/patent/US2653899A/en]
29. Sutcliffe JA, Leclercq R. Mechanisms of resistance to macrolides, lincosamides, and ketolides. In: Schönfeld W, Kirst HA, editors. Macrolide Antibiotics. Basel: Birkhäuser Basel; 2002. pp. 281-317. [DOI:10.1007/978-3-0348-8105-0_17]
30. Charney J, Fisher WP, Curran C, Machlowitz RA, Tytell AA. Streptogramin, a new antibiotic. Antibiot Chemother (Northfield). 1953;3(12):1283-6.
31. McCormick MH, McGuire JM, Pittenger GE, Pittenger RC, Stark WM. Vancomycin, a new antibiotic. I. Chemical and biologic properties. Antibiot Annu. 1955;3:606-11.
32. Binda E, Cappelletti P, Marinelli F, Marcone GL. Specificity of Induction of Glycopeptide Antibiotic Resistance in the Producing Actinomycetes. Antibiotics. 2018;7(2). [DOI:10.3390/antibiotics7020036] [PMID] [PMCID]
33. Hidy PH, Hodge EB, Young VV, Harned RL, Brewer GA, Phillips WF, et al. Structure and Reactions of Cycloserine. J Am Chem Soc. 1955;77(8):2345-6. [DOI:10.1021/ja01613a106]
34. Evangelopoulos D, Prosser GA, Rodgers A, Dagg BM, Khatri B, Ho MM, et al. Comparative fitness analysis of D-cycloserine resistant mutants reveals both fitness-neutral and high-fitness cost genotypes. Nat Commun. 2019;10(1):4177. [DOI:10.1038/s41467-019-12074-z] [PMID] [PMCID]
35. Argoudelis AD, Fox JA, Mason DJ. Studies on the Biosynthesis of Lincomycin. II. Antibiotic U-11,973, N-Demethyl Lincomycin*. Biochemistry. 1965;4(4):710-3. [DOI:10.1021/bi00880a016] [PMID]
36. Sensi P, Margalith P, Timbal MT. Rifomycin, a new antibiotic; preliminary report. Farmaco Sci. 1959;14(2):146-7.
37. Floss HG, Yu TW. Rifamycin Mode of Action, Resistance, and Biosynthesis. Chem Rev. 2005;105(2):621-32. [DOI:10.1021/cr030112j] [PMID]
38. Silver LL. Fosfomycin: Mechanism and Resistance. Cold Spring Harb Perspect Med. 2017;7(2):a025262. [DOI:10.1101/cshperspect.a025262] [PMID] [PMCID]
39. Aurilio C, Sansone P, Barbarisi M, Pota V, Giaccari LG, Coppolino F, et al. Mechanisms of Action of Carbapenem Resistance. Antibiotics. 2022;11(3):421. [DOI:10.3390/antibiotics11030421] [PMID] [PMCID]
40. Heidary M, Khosravi AD, Khoshnood S, Nasiri MJ, Soleimani S, Goudarzi M. Daptomycin. J Antimicrob Chemother. 2018;73(1):1-11. [DOI:10.1093/jac/dkx349] [PMID]
41. Drugbank. Mupirocin: Drugbank. Available from: [https://go.drugbank.com/drugs/DB00410]
42. Sykes RB, Bonner DP. Aztreonam: The first monobactam. Am J Med. 1985;78(2):2-10. [DOI:10.1016/0002-9343(85)90196-2] [PMID]
43. Liou JW, Hung YJ, Yang CH, Chen YC. The Antimicrobial Activity of Gramicidin A Is Associated with Hydroxyl Radical Formation. PLoS One. 2015;10(1):e0117065. [DOI:10.1371/journal.pone.0117065] [PMID] [PMCID]
44. Radeck J, Gebhard S, Orchard PS, Kirchner M, Bauer S, Mascher T, Fritz G. Anatomy of the bacitracin resistance network in Bacillus subtilis. Mol Microbiol. 2016;100(4):607-20. [DOI:10.1111/mmi.13336] [PMID]
45. Li Z, Cao Y, Yi L, Liu JH, Yang Q. Emergent Polymyxin Resistance: End of an Era?. Open Forum Infect Dis. 2019;6(10):ofz368. [DOI:10.1093/ofid/ofz368] [PMID] [PMCID]
46. King DT, Sobhanifar S, Strynadka NCJ. The Mechanisms of Resistance to β-Lactam Antibiotics. In: Gotte M, Berghuis A, Matlashewski G, Wainberg M, Sheppard D, editors. Handbook of Antimicrobial Resistance. New York, NY: Springer New York; 2014. pp. 1-22.
47. Kavanagh F, Hervey A, Robbins WJ. Antibiotic Substances From Basidiomycetes. Proc Natl Acad Sci USA. 1951;37(9):570-4. [DOI:10.1073/pnas.37.9.570] [PMID] [PMCID]
48. Godtfredsen WO, Jahnsen S, Lorck H, Roholt K, Tybring L. Fusidic Acid: a New Antibiotic. Nature. 1962;193(4819):987. [DOI:10.1038/193987a0] [PMID]
49. Gram C. The differential staining of Schizomycetes in tissue sections and in dried preparations. Fortschritte der Medizin. 1884;2:185-9.
50. Feofilova EP. The fungal cell wall: Modern concepts of its composition and biological function. Microbiology. 2010;79(6):711-20. [DOI:10.1134/S0026261710060019]
51. Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics. 2020;10(1):3. [DOI:10.3390/antibiotics10010003] [PMID] [PMCID]
52. Delcour AH. Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta - Proteins Proteom. 2009;1794(5):808-16. [DOI:10.1016/j.bbapap.2008.11.005] [PMID] [PMCID]
53. Zhang L, Tian X, Sun L, Mi K, Wang R, Gong F, et al. Bacterial Efflux Pump Inhibitors Reduce Antibiotic Resistance. Pharmaceutics. 2024;16(2):170. [DOI:10.3390/pharmaceutics16020170] [PMID] [PMCID]
54. Long Y, Wang B, Xie T, Luo R, Tang J, Deng J, et al. Overexpression of efflux pump genes is one of the mechanisms causing drug resistance in Mycobacterium tuberculosis. Microbiol Spectr. 2023;12(1):e02510-23. [DOI:10.1128/spectrum.02510-23] [PMID] [PMCID]
55. Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37(1):177-92. [DOI:10.1016/j.biotechadv.2018.11.013] [PMID]
56. Kim H, Kim M, Kim S, Lee YM, Shin SC. Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics. Environ Pollut. 2022;294:118634. [DOI:10.1016/j.envpol.2021.118634] [PMID]
57. Mootapally C, Nathani NM, Poriya P, Beleem I, Dabhi JC, Gadhvi IR, et al. Antibiotic Resistome Biomarkers associated to the Pelagic Sediments of the Gulfs of Kathiawar Peninsula and Arabian Sea. Sci Rep. 2019;9:17281. [DOI:10.1038/s41598-019-53832-9] [PMID] [PMCID]
58. Nathani NM, Mootapally C, Dave BP. Antibiotic resistance genes allied to the pelagic sediment microbiome in the Gulf of Khambhat and Arabian Sea. Sci Total Environ. 2019;653:446-54. [DOI:10.1016/j.scitotenv.2018.10.409] [PMID]
59. Lu J, Wang Y, Jin M, Yuan Z, Bond P, Guo J. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Res. 2020;169:115229. [DOI:10.1016/j.watres.2019.115229] [PMID]
60. Dutt Y, Pandey RP, Dutt M, Gupta A, Vibhuti A, Raj VS, et al. Silver Nanoparticles Phytofabricated through Azadirachta indica: Anticancer, Apoptotic, and Wound-Healing Properties. Antibiotics. 2023;12(1):121. [DOI:10.3390/antibiotics12010121] [PMID] [PMCID]
61. Whiteley CM, Valle MD, Jones KC, Sweetman AJ. Challenges in assessing release, exposure and fate of silver nanoparticles within the UK environment. Environ Sci: Process Impacts. 2013;15(11):2050-8. [DOI:10.1039/c3em00226h] [PMID]
62. Temizel-Sekeryan S, Hicks AL. Global environmental impacts of silver nanoparticle production methods supported by life cycle assessment. Resour Conserv Recycl. 2020;156. [DOI:10.1016/j.resconrec.2019.104676]
63. Jafari S, Mahyad B, Hashemzadeh H, Janfaza S, Gholikhani T, Tayebi L. Biomedical Applications of TiO2 Nanostructures: Recent Advances. Int J Nanomed. 2020;15:3447-70. [DOI:10.2147/IJN.S249441] [PMID] [PMCID]
64. Qiu Z, Shen Z, Qian D, Jin M, Yang D, Wang J, et al. Effects of nano-TiO2 on antibiotic resistance transfer mediated by RP4 plasmid. Nanotoxicology. 2015;9(7):895-904. [DOI:10.3109/17435390.2014.991429] [PMID]
65. Zhang Y, Gu AZ, Cen T, Li X, He M, Li D, et al. Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environ Pollut. 2018;237:74-82. [DOI:10.1016/j.envpol.2018.01.032] [PMID]
66. Singh CK, Sodhi KK, Shree P, Nitin V. Heavy Metals as Catalysts in the Evolution of Antimicrobial Resistance and the Mechanisms Underpinning Co-selection. Curr Microbiol. 2024;81(6):148. [DOI:10.1007/s00284-024-03648-2] [PMID]
67. Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DGJ. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42(D1):D737-D43. [DOI:10.1093/nar/gkt1252] [PMID] [PMCID]
68. Suzuki S, Kimura M, Agusa T, Rahman HM. Vanadium accelerates horizontal transfer of tet(M) gene from marine Photobacterium to Escherichia coli. FEMS Microbiol Lett. 2012;336(1):52-6. [DOI:10.1111/j.1574-6968.2012.02653.x] [PMID]
69. Liu X, Wang D, Tang J, Liu F, Wang L. Effect of dissolved biochar on the transfer of antibiotic resistance genes between bacteria. Environ Pollut. 2021;288:117718. [DOI:10.1016/j.envpol.2021.117718] [PMID]
70. Sooriyakumar P, Bolan N, Kumar M, Singh L, Yu Y, Li Y, et al. Biofilm formation and its implications on the properties and fate of microplastics in aquatic environments: A review. J Hazard Mater Adv. 2022;6:100077. [DOI:10.1016/j.hazadv.2022.100077]
71. Li R, Zhu L, Yang K, Li H, Zhu YG, Cui L. Impact of Urbanization on Antibiotic Resistome in Different Microplastics: Evidence from a Large-Scale Whole River Analysis. Environ Sci Technol. 2021;55(13):8760-70. [DOI:10.1021/acs.est.1c01395] [PMID]
72. Kaviani Rad A, Balasundram SK, Azizi S, Afsharyzad Y, Zarei M, Etesami H, et al. An overview of antibiotic resistance and abiotic stresses affecting antimicrobial resistance in agricultural soils. Int J Environ Res Public Health. 2022;19(8):4666. [DOI:10.3390/ijerph19084666] [PMID] [PMCID]
73. Zhong C, Zhou Y, Fu J, Qi X, Wang Z, Li J, et al. Cadmium stress efficiently enhanced meropenem degradation by the meropenem- and cadmium-resistant strain Pseudomonas putida R51. J Hazard Mater. 2022;429:128354. [DOI:10.1016/j.jhazmat.2022.128354] [PMID]
74. Miller SA, Ferreira JP, LeJeune JT. Antimicrobial Use and Resistance in Plant Agriculture: A One Health Perspective. Agriculture. 2022;12(2):289. [DOI:10.3390/agriculture12020289]
75. Li X, Wen C, Liu C, Lu S, Xu Z, Yang Q, et al. Herbicide promotes the conjugative transfer of multi-resistance genes by facilitating cellular contact and plasmid transfer. J Environ Sci. 2022;115:363-73. [DOI:10.1016/j.jes.2021.08.006] [PMID]
76. Braz VS, Moretto JAS, Fernandes AFT, Stehling EG. Change in the antimicrobial resistance profile of Pseudomonas aeruginosa from soil after exposure to herbicides. J Environ Sci Health B. 2019;54(4):290-3. [DOI:10.1080/03601234.2018.1561056] [PMID]
77. Pasha SAR, Namitha BN, Ismail W, Gowri R, Natarajan A. Experiment to Demonstrate Pesticide-Induced Antimicrobial Resistance (AMR): An Emerging Health Threat. Cureus. 2024;16(2):e54243. [DOI:10.7759/cureus.54243] [PMID] [PMCID]
78. Xing Y, Herrera D, Zhang S, Kang X, Men Y. Site-specific target-modification mutations exclusively induced by the coexposure to low levels of pesticides and streptomycin caused strong streptomycin resistance in clinically relevant Escherichia coli. J Hazard Mater Adv. 2022;7:100141. [DOI:10.1016/j.hazadv.2022.100141]
79. Cadena M, Kelman T, Marco ML, Pitesky M. Understanding Antimicrobial Resistance (AMR) Profiles of Salmonella Biofilm and Planktonic Bacteria Challenged with Disinfectants Commonly Used During Poultry Processing. Foods. 2019;8(7):275. [DOI:10.3390/foods8070275] [PMID] [PMCID]
80. Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2018;42(1):fux053. [DOI:10.1093/femsre/fux053] [PMID] [PMCID]
81. Vats P, Kaur UJ, Rishi P. Heavy metal‐induced selection and proliferation of antibiotic resistance: A review. J Appl Microbiol. 2022;132(6):4058-76. [DOI:10.1111/jam.15492] [PMID]
82. Zhang S, Wang Y, Song H, Lu J, Yuan Z, Guo J. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera. Environ Int. 2019;129:478-87. [DOI:10.1016/j.envint.2019.05.054] [PMID]
83. Seier-Petersen MA, Jasni A, Aarestrup FM, Vigre H, Mullany P, Roberts AP, Agersø Y. Effect of subinhibitory concentrations of four commonly used biocides on the conjugative transfer of Tn916 in Bacillus subtilis. J Antimicrob Chemother. 2014;69(2):343-8. [DOI:10.1093/jac/dkt370] [PMID] [PMCID]
84. Murray LM, Hayes A, Snape J, Kasprzyk-Hordern B, Gaze WH, Murray AK. Co-selection for antibiotic resistance by environmental contaminants. NPJ Antimicrob Resist. 2024;2(1):1-13. [DOI:10.1038/s44259-024-00026-7] [PMID] [PMCID]
85. Zerikly M, Challis GL. Strategies for the Discovery of New Natural Products by Genome Mining. ChemBioChem. 2009;10(4):625-33. [DOI:10.1002/cbic.200800389] [PMID]
86. Jangra M, Travin DY, Aleksandrova EV, Kaur M, Darwish L, Koteva K, et al. A broad-spectrum lasso peptide antibiotic targeting the bacterial ribosome. Nature. 2025;640(8060):1022-30. [DOI:10.1038/s41586-025-08723-7] [PMID] [PMCID]
87. Pahil KS, Gilman MSA, Baidin V, Clairfeuille T, Mattei P, Bieniossek C, et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature. 2024;625(7995):572-7. [DOI:10.1038/s41586-023-06799-7] [PMID] [PMCID]
88. Yılmaz TM, Mungan MD, Berasategui A, Ziemert N. FunARTS, the Fungal bioActive compound Resistant Target Seeker, an exploration engine for target-directed genome mining in fungi. Nucleic Acids Res. 2023;51(W1):W191-W7. [DOI:10.1093/nar/gkad386] [PMID] [PMCID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.