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 ABSTRACT 
 

Antimicrobial resistance (AMR) presents a formidable global health challenge, jeopardizing the efficacy of current 
antibiotics and posing a substantial threat to public health. The escalating prevalence of AMR demands innovative solutions. 
However, the traditional drug discovery process for combating AMR is marked by significant costs, prolonged timelines, 
frequent inefficacies, and numerous developmental hurdles. This narrative review explores the potential role of artificial 
intelligence (AI) in addressing AMR through drug discovery and development. It assesses the current state of AMR, critiques 
the limitations of conventional drug discovery methods, and elucidates the opportunities and advancements afforded by 
AI. The review delves into various AI applications, encompassing machine learning, deep learning, and language models, for 
the identification of novel antimicrobial agents, optimization of drug design, and prediction of AMR mechanisms. 
Additionally, it examines the integration of AI with high-throughput screening, genomics, and proteomics to expedite the 
discovery and development of new antimicrobial compounds. The review concludes by addressing challenges and ethical 
considerations linked to AI implementation in AMR research, emphasizing the imperative for collaborative efforts among 
scientists, policymakers, and healthcare professionals to effectively combat AMR.  
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1. Introduction 

Antimicrobial resistance (AMR) poses a global 
health crisis wherein microorganisms like bacteria, 
viruses, fungi, and parasites develop resistance to 
antimicrobial drugs, diminishing their effectiveness in 
treating infections (1). This resistance jeopardizes the 
potency of antibiotics, antivirals, and antifungals, 
crucial for combating infectious diseases and 

upholding public health. The proliferation of AMR 
carries profound consequences for healthcare 
systems on a global scale. The World Health 
Organization (WHO) reports that AMR leads to 
approximately 700,000 deaths annually, and if 
unchecked, this figure could escalate to 10 million 
deaths yearly by 2050, accompanied by a cumulative 
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economic burden of $100 trillion (2). AMR not only 
increases the morbidity and mortality rates associated 
with infections but also contributes to prolonged 
hospital stays, increased healthcare costs, and 
reduced treatment options. It poses a particular risk to 
vulnerable populations, such as the elderly, newborns, 
and individuals with compromised immune systems 
(3, 4). The global impact of AMR extends beyond 
human health and affects veterinary medicine, 
agriculture, and food production due to the 
widespread use of antimicrobials in these sectors. 
AMR development and spread are fueled by the 
misuse and overuse of antimicrobials in humans and 
animals, coupled with inadequate infection 
prevention and control practices. Conventional drug 
discovery struggles to keep up with the rapid 
emergence of AMR, resulting in a limited pipeline of 
new antimicrobial agents. Therefore, addressing the 
multifaceted challenge of AMR requires a 
multidisciplinary approach and innovative strategies 
and technologies to ensure effective treatments for 
infectious diseases. 

The need for innovative approaches in drug 
discovery arises from the scarcity of new antibiotics to 
combat the growing threat of AMR. The traditional 
drug discovery process, which relies on screening 
natural products and making chemical modifications, 
has fallen behind the rapid emergence of resistant 
bacteria. The high failure rates and long timelines 
associated with antibiotic development have 
discouraged pharmaceutical investment in this area 
(5). 

Given this context, innovative approaches are 
essential to overcome AMR challenges and maintain a 
sustainable arsenal of effective antimicrobial agents. 
These approaches aim to identify new targets, 
develop novel compounds, and optimize existing 
antibiotics against resistant pathogens. 

The integration of advanced technologies, such as 
artificial intelligence (AI), offers promising 
opportunities in drug discovery, surveillance, 
diagnostics, and personalized medicine. 

This narrative review explores the integration of AI 
into drug discovery and development to combat 
antimicrobial resistance. It examines various AI 
applications in target identification, compound 
screening, lead optimization, and repurposing. The 
review also discusses the challenges and limitations 
associated with AI in AMR-focused drug discovery, as 
well as ethical considerations. By harnessing the 
potential of AI, it becomes possible to expedite the 
discovery of novel antimicrobial agents, optimize 
existing drugs, and effectively combat the growing 
threat of antimicrobial resistance.  

1.1 Motivation 

Several studies have extensively explored the 
applications of AI and machine learning (ML) in the 
analysis of data for drug discovery and development 
(6, 7). However, a noticeable gap exists in research 
concerning the utilization of AI in the specific 
domain of Antimicrobial Resistance, unlike the 
comprehensive studies in drug development. This 
gap in the literature has prompted the researchers 
of this manuscript to conduct a Narrative Review, 
filling the void and laying the groundwork for future 
studies in this crucial field. The aim is to contribute 
valuable insights to scientific communities and 
stimulate further exploration into the potential of AI 
in combating Antimicrobial Resistance. 

1.2 AI Discipline and methods of AI  

In recent years, there has been a significant rise in 
the digitalization of data within the pharmaceutical 
sector. However, this digital transformation poses 
challenges in terms of acquiring, analyzing, and 
effectively applying knowledge to address intricate 
clinical issues. This has led to a growing interest in the 
use of AI due to its ability to handle substantial 
amounts of data through improved automation. AI, as 
a technology-based system, incorporates various 
advanced tools and networks that emulate human 
intelligence without completely replacing human 
physical presence (8). AI employs systems and 
software capable of interpreting and learning from 
input data to autonomously make decisions in pursuit 
of specific objectives. The applications of AI in the 
pharmaceutical field are continually expanding, as 
discussed in this review. According to the McKinsey 
Global Institute, the swift progress in AI-guided 
automation is poised to bring about profound changes 
in societal work culture (9).   

AI encompasses various methodological domains, 
including reasoning, knowledge representation, 
solution search, and, notably, a fundamental 
paradigm known as ML, Deep Learning (DL) and 
Language large models (Figure 1).  

ML employs algorithms capable of identifying 
patterns within categorized datasets. Within ML, 
there exists a subfield known as deep learning, which 
employs artificial neural networks (ANNs) (10). These 
networks consist of interconnected sophisticated 
computing elements resembling human biological 
neurons, imitating the transmission of electrical 
impulses in the human brain. ANNs consist of nodes, 
each receiving distinct inputs and ultimately 
producing outputs, either individually or through 
multilinked configurations, utilizing algorithms to 
address problems (11). There are various types of 
ANNs, such as multilayer perceptron (MLP) networks, 
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recurrent neural networks (RNNs), and convolutional 
neural networks (CNNs), which employ either 
supervised or unsupervised training procedures (12).  

 

Figure 1. The Discipline of AI subdivision and methods (Designed by Authors, 2024) 
 

Over the past one or two years, a transformative 
concept has surfaced, signifying a notable shift in the 
realm of artificial intelligence—namely, the 
emergence of generative AI networks. The core of this 
Generative AI concept lies in Large Language Models 
(LLMs), sparking significant transformations at the 
peripheries of applied knowledge (13). In recent 
months, there has been a pronounced surge in 
innovative developments within the field of 
generative artificial intelligence, particularly with the 
widespread attention garnered from academic, 
media, and public spheres. Prominent examples of 

LLMs include GPT-3, BERT, and ChatGPT, all of which 
have undergone extensive training on vast portions of 
the internet, resulting in their ability to generate 
impressive responses to human queries (14). The 
versatility of these generalized LLMs extends to tasks 
such as fiction writing, computer code development, 
and speculative discussions about the future, 
prompting the acknowledgment that we are on the 
brink of achieving artificial general intelligence for the 
first time. The figure (2) illustrates the LLMs developed 
in the recent months. 

 

 

Figure 2. The LLM based technologies and Chatbot (Designed by Authors, 2024) 



138   Artificial Intelligence in Drug Discovery and Development 

Year 18, Issue 3 (May – June 2024)                      Iranian Journal of Medical Microbiology 

2. Materials and Methods

The information obtained to write this study was 
collected from reliable databases including Scopus, 
PubMed and Google Scholar.  
 

3. Results 

In this investigation, we reviewed pertinent research in 
the scientific database, assessed the strengths and 
weaknesses of traditional approaches in drug 
development, categorized diverse artificial intelligence 
applications within the field of drug development, and 
conducted a thorough analysis of drug discovery 
methods, placing specific emphasis on addressing 
Antimicrobial Resistance. 

3.1 Conventional Drug Discovery Approaches and 
Limitations 

Conventional drug discovery approaches have played 
a vital role in the development of various antimicrobial 
agents. However, these approaches face several 
limitations, resulting in challenges in combating AMR. 
Phenotypic screening involves testing compounds for 
their ability to produce a desired biological effect in 
whole organisms or cells. This approach allows for the 
identification of compounds with desired activity but 
without the need for prior knowledge of the target. 
However, phenotypic screening often lacks mechanistic 
insights, making it challenging to optimize compounds or 
understand their specific mode of action (15). 
Additionally, the identification of the target can be 
laborious and time-consuming. On the other hand, 
target-based screening focuses on identifying 
compounds that interact with a specific target, such as a 
protein or enzyme involved in a disease pathway. This 
approach relies on knowledge of the target's structure 
and function. However, the identification of suitable 
targets can be difficult, particularly in complex diseases 
with poorly understood mechanisms (16). Moreover, the 
reliance on single targets may overlook the complexity of 
disease biology and the potential for compensatory 
mechanisms. 

Combinatorial chemistry is another conventional drug 
discovery approach that involves the synthesis and 
screening of large libraries of compounds with diverse 
structures (17). This approach aims to explore a wide 
chemical space and identify compounds with desired 
biological activity. However, the sheer size of compound 
libraries makes screening and optimization challenging, 
as it requires significant time, resources, and expertise 
(18). Furthermore, combinatorial chemistry may not 
adequately explore the chemical diversity needed to 
address complex targets or pathways. 

Natural products have served as a valuable source of 
drug leads. Extracts from plants, microbes, and marine 

organisms have historically provided numerous bioactive 
compounds. However, the process of discovering and 
isolating natural products can be labor-intensive and 
time-consuming (19). Additionally, the limited supply 
and challenges in scaling up production have posed 
obstacles to their development as drugs. An essential 
aspect of drug discovery is ensuring that compounds 
have desirable pharmacokinetic properties, such as 
bioavailability, appropriate half-life, and metabolic 
stability. Furthermore, compounds must undergo 
rigorous safety assessments to determine their potential 
toxicity and side effects. These factors add to the 
complexity and cost of drug discovery, as compounds 
must meet stringent criteria for further development 
(20). 

The challenges associated with traditional drug 
discovery methods have led to an increased interest in 
innovative approaches, such as AI, machine learning, and 
computational modeling, to overcome these limitations. 
By leveraging these technologies, researchers can 
analyze large datasets, model complex interactions, and 
design more efficient and targeted drug discovery 
strategies. 

3.2 Crucial Role of AI in Tackling the AMR 

AMR in bacteria is a global health crisis due to the rapid 
emergence of multidrug-resistant bacteria and the 
protracted development of new antimicrobials. The rise 
of AMR in bacteria since the 1940s has become a global 
health crisis (21). AMR develops through genetic 
mutation and spreads naturally through horizontal gene 
transfer. The long process of discovering and developing 
antimicrobials, including years of clinical trials, contrasts 
with the misuse and easy accessibility of antibiotics, 
leading to multidrug resistance (MDR) (22, 23). This crisis 
has resulted in a shortage of safe antimicrobials to 
combat MDR bacteria. To address this, rapid and efficient 
identification of bacterial AMR is crucial. AI, particularly 
ML, emerges as a novel approach for accurate and timely 
identification. ML involves training computers with large 
sets of experimental data. Databases like CARD and 
MegaRES collect peer-reviewed AMR determinants data, 
enabling the training of algorithms to reliably identify 
known or novel AMR and predict minimum inhibitory 
concentrations of MDR bacteria. This AI-based approach 
aims to combat the global AMR crisis and reduce 
antimicrobial misuse (24). 

AI techniques have shown great potential in 
transforming various aspects of drug discovery and 
development. By leveraging large-scale genomic, 
proteomic, and metabolomic data, AI algorithms can aid 
in target identification, compound optimization, and 
prediction of antimicrobial resistance patterns (25, 26). 
These AI-driven approaches provide researchers with 



Mustafa Ghaderzadeh et al., 139 

Year 18, Issue 3 (May – June 2024)                      Iranian Journal of Medical Microbiology 

valuable insights, enabling them to make informed 
decisions and prioritize resources effectively. 

Furthermore, AI can facilitate the repurposing of 
existing drugs for antimicrobial use, allowing for a more 
rapid and cost-effective development process. Drug 
repurposing, combined with AI techniques, can help 
identify non-antibiotic compounds that possess 
antimicrobial activity, potentially expanding the 
repertoire of available treatments (27). This approach 
can offer a valuable alternative to traditional antibiotic 
development and overcome some of the challenges 
associated with de novo compound discovery. 

The significance of innovative approaches in drug 
discovery extends beyond the development of new 
antimicrobial agents. It also encompasses the 
optimization of existing antibiotics to enhance their 
efficacy, minimize toxicity, and combat resistance 
mechanisms. AI-driven computational approaches, such 
as structure-based drug design and virtual screening, can 
facilitate the modification and optimization of antibiotic 
compounds, improving their pharmacological properties 
and reducing the likelihood of resistance development 
(28).  

3.3 AI Applications in AMR  

3.3.1 Traditional Machine learning in identifying 
antimicrobial compounds 

Machine learning, a subset of artificial intelligence, has 
emerged as a powerful tool in drug discovery, including 
the identification of antimicrobial compounds. By 
leveraging large datasets, computational algorithms, and 
pattern recognition, machine learning techniques 
contribute to the rapid and efficient identification of 
potential antimicrobial agents. This section explores the 
role of machine learning in identifying antimicrobial 
compounds and provides relevant references supporting 
its application. 

1. Data-driven Approaches: Machine learning 
algorithms can analyze vast amounts of data, including 
chemical structures, biological activity profiles, and 
genomic information, to identify patterns and 
relationships associated with antimicrobial activity. By 
learning from existing data, machine learning models can 
predict the antimicrobial potential of novel compounds 
and prioritize candidates for further experimental 
validation (26, 29). 

2. Virtual Screening and Drug Repurposing: Machine 
learning techniques enable virtual screening, a 
computational approach used to identify potential 
antimicrobial compounds from large chemical libraries. 
By training models on known antimicrobial compounds 
and their properties, machine learning algorithms can 
efficiently screen millions of compounds and rank them 
according to their likelihood of exhibiting antimicrobial 
activity. Furthermore, machine learning can aid in drug 

repurposing, identifying existing drugs with potential 
antimicrobial properties (30, 31). 

3. Feature Extraction and Descriptors: Machine 
learning models require informative features or 
descriptors to capture the relevant characteristics of 
antimicrobial compounds. Various molecular 
descriptors, including physicochemical properties, 
molecular fingerprints, and structural fragments, can be 
used as input features for machine learning algorithms. 
These descriptors help in representing the compounds' 
chemical space and facilitate the prediction of their 
antimicrobial properties (32, 33). 

4. Predictive Models and Optimization: Machine 
learning algorithms can build predictive models that 
classify compounds as antimicrobial or non-antimicrobial 
based on their features. These models can be trained on 
labeled datasets and optimized to improve their accuracy 
and generalizability. Additionally, machine learning can 
aid in optimizing the chemical structures of compounds 
to enhance their antimicrobial activity through virtual 
screening and molecular design (25, 34). 

5. Antibiotic Resistance Prediction: Machine learning 
techniques can also be employed to predict and analyze 
antibiotic resistance. By analyzing genomic data from 
resistant strains, machine learning models can identify 
genetic markers and patterns associated with resistance 
mechanisms. This information can guide the 
development of novel antimicrobial compounds or 
strategies to combat resistance (35, 36). 

3.3.2. Deep learning for drug design and optimization 

Deep learning models can generate novel compounds 
with desired properties by learning patterns from large 
chemical databases. Generative models, such as 
generative adversarial networks (GANs) and variational 
autoencoders (VAEs), can produce structurally diverse 
compounds with specific chemical characteristics. These 
generated compounds can serve as starting points for 
further optimization and synthesis (37, 38). 

Deep learning algorithms can accurately predict 
various molecular properties, such as solubility, 
bioactivity, toxicity, and binding affinity. By training on 
large datasets of chemical structures and their 
corresponding properties, deep learning models can 
learn complex relationships and make predictions on 
new compounds. These predictions aid in prioritizing 
compounds for synthesis and screening, thereby saving 
time and resources (39, 40). Deep learning models can 
also be employed for virtual screening, which involves 
computationally screening large compound libraries to 
identify potential hits against specific targets. CNNs and 
RNNs can analyze molecular structures, protein-ligand 
interactions, and binding affinities to rank compounds 
based on their likelihood of binding to a target. This 
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approach helps in identifying promising lead compounds 
for further experimental validation (41, 42). 

Deep learning techniques enable de novo drug design, 
where the algorithm generates novel compounds with 
optimized properties. By incorporating desired 
molecular properties, constraints, and target interactions 
into the model, deep learning algorithms can explore the 
chemical space and propose compounds with improved 
efficacy and reduced off-target effects (43, 44). 
Additionally, deep learning algorithms can analyze large-
scale biological and chemical data to identify new 
therapeutic indications for existing drugs. By integrating 
diverse datasets, such as gene expression profiles, drug-
protein interactions, and disease networks, deep 
learning models can predict potential drug-disease 
associations and repurpose approved drugs for new 
indications (45, 46). 

3.3.3 LLM in Drug discovery and development 

Due to the novelty of this technology, its applications 
in the field of drug discovery and development have not 
been developed much. But this field has great potential 
in the development of new and recombinant drug 
structures. This interactive technology is able to provide 
constructive suggestions with the researchers of this field 
based on the topics that the model has learned on. LLM 
in Drug Discovery and Development can be a valuable 
tool in various aspects of the drug development process. 
But five accepted uses of an LLM can be listed and 
categorized by reviewing the research done (47, 48). A) 
Drug design and optimization: LLMs can generate new 
drug structures by inferring missing protein segments or 
small molecule sequences. These models can quickly 
generate new structures that can potentially be useful in 
drug development. B) Toxicity prediction: LLMs can be 
used to score new drug structures with respect to 
toxicity. By analyzing the generated structures, LLMs can 
provide insight into the potential toxicity of a drug 
candidate. C) Binding affinity prediction: LLMs can also 
predict the binding affinity of a drug candidate to its 
target protein. This information is very important in 
determining the effectiveness of a drug in interaction 
with its target and can help to optimize drugs. D) Ease of 
Synthesis Prediction: LLMs can assess the ease of 
synthesis of a drug candidate. This information is 
important in determining the feasibility and cost-
effectiveness of large-scale production of a drug. E) 
Predicting pharmaceutical similarity: LLMs can evaluate 
the pharmaceutical similarity of a compound by 
considering various factors such as molecular weight, 
lipophilicity, and structural features. This evaluation 
helps identify compounds with a higher probability of 
success in drug development. It is noteworthy that while 
LLMs can generate new drug structures and provide 
predictions, further validation and experimental testing 
are necessary to confirm the efficacy and safety of these 
candidates. 

3.3.4. Data mining and knowledge discovery in AMR 
databases 

Data mining and knowledge discovery techniques play 
a crucial role in extracting valuable insights and patterns 
from large-scale AMR databases. By applying 
computational methods and statistical analysis to these 
databases, researchers can uncover hidden 
relationships, identify emerging resistance patterns, and 
guide the development of effective strategies to combat 
AMR. Data mining algorithms can identify patterns and 
clusters within AMR databases, enabling the discovery of 
novel resistance mechanisms and the characterization of 
resistance profiles. By analyzing large collections of 
microbial genomes and resistance phenotypes, 
clustering techniques, such as k-means clustering and 
hierarchical clustering, can group similar strains based on 
their resistance patterns and identify outliers with 
unique AMR characteristics (49, 50). 

Association rule mining techniques, such as Apriori and 
FP-growth, can uncover associations and correlations 
between different antimicrobial resistance genes, 
mutations, and phenotypes. By analyzing AMR 
databases, these algorithms can identify co-occurring 
resistance genes or mutations, providing insights into the 
genetic determinants of resistance and potential gene 
interactions (51, 52). In addition, data mining 
approaches can build predictive models to forecast 
antimicrobial resistance based on various factors, 
including genomic data, patient demographics, and 
environmental conditions. Machine learning algorithms, 
such as decision trees, support vector machines (SVM), 
and random forests, can learn from historical data to 
predict the likelihood of resistance emergence or the 
effectiveness of specific antimicrobial treatments (53, 
54). Network analysis techniques, such as graph theory 
and network clustering, can also reveal the complex 
relationships between AMR genes, mobile genetic 
elements, and bacterial strains. By constructing networks 
based on gene co-occurrence or genetic similarity, these 
methods can identify key resistance genes, transmission 
routes, and potential sources of resistance dissemination 
(55, 56). 

Text mining and natural language processing 
techniques can extract valuable information from 
scientific literature, clinical reports, and other textual 
sources related to AMR. By analyzing and categorizing 
text data, these methods can identify novel resistance 
mechanisms, track the spread of specific resistance 
genes, and facilitate the curation and integration of AMR 
knowledge (57, 58). 

3.3.5 Extra application of AI in combating AMR 

3.3.5.1 AI in High-Throughput Screening, Genomics, 
and Proteomics 
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High-throughput screening (HTS), genomics, and 
proteomics are essential fields in drug discovery and 
biomedical research. The integration of AI into these 
fields has revolutionized the way scientists analyze and 
interpret large-scale biological data, leading to more 
efficient and accurate results. Research has 
demonstrated that AI has sparked innovation in various 
areas, including high-throughput screening, genomics, 
and proteomics. 

3.3.5.2 Genomics analyzer equipped with AI 

AI algorithms can analyze large-scale genomic data, 
including DNA sequencing and gene expression data, to 
identify patterns and associations that may be relevant 
to disease diagnosis, prognosis, and treatment. AI can 
help interpret genomic variants and help researchers 
identify disease-causing mutations and potential 
therapeutic targets. AI can predict gene functions and 
regulatory elements based on genomic data and help to 
understand gene networks and biological processes (59). 

3.3.5.3 Proteomics Analyzer Equipped with AI 

AI algorithms can analyze proteomics data, such as 
protein expression levels and post-translational 
modifications, to identify biomarkers for disease 
diagnosis, prognosis and treatment. AI can predict 
protein structures and interactions and help to 
understand protein function and drug-target 
interactions. AI can help identify potential drug targets by 
analyzing proteomics data and identifying proteins 
involved in disease pathways. Overall, the integration of 
AI into high-throughput screening, genomics, and 
proteomics has significantly increased the efficiency and 
accuracy of data analysis, leading to improved drug 
discovery findings and biomedical research outcomes 
(60). 

3.3.5.4 Accelerating drug discovery through AI-
powered screening 

AI-powered screening methods leverage ML 
algorithms to analyze large datasets, predict compound 
properties, and prioritize molecules for further 
experimental validation. This section discusses the 
applications of AI-powered screening in drug discovery, 
supported by relevant references. 

1. Virtual Screening: AI algorithms can perform virtual 
screening to computationally evaluate large libraries of 
compounds and identify potential drug candidates. 
Machine learning models, such as SVM, random forests, 
and deep learning architectures, can analyze molecular 
structures, physicochemical properties, and biological 
data to predict the likelihood of a compound's activity 
against a specific target. This approach helps in 
prioritizing compounds for experimental testing, 
reducing the time and cost associated with traditional 
screening methods (61, 62). 

2. HTS Data Analysis: AI algorithms can analyze data 
generated from high-throughput screening campaigns, 
where thousands of compounds are tested against a 
target in a short period. By applying machine learning 
techniques, such as clustering, classification, and 
regression, to HTS data, AI models can identify active 
compounds, understand structure-activity relationships, 
and predict the potency of untested compounds. This 
enables researchers to make informed decisions and 
focus on the most promising molecules (26, 63). 

3. De Novo Design: AI-powered approaches facilitate 
de novo drug design by generating novel compound 
structures with desired properties. Generative models, 
including generative adversarial networks (GANs) and 
variational autoencoders (VAEs), can learn from existing 
compound libraries and generate new molecules with 
optimized properties. By combining generative models 
with reinforcement learning techniques, AI algorithms 
can iteratively design and refine compounds based on 
target interactions and desired drug properties (38, 43). 

4. Drug Repurposing: AI algorithms can mine large-
scale biological and clinical datasets to identify potential 
new applications for existing drugs. By integrating 
diverse data sources, such as genomic data, electronic 
health records, and drug databases, AI models can 
predict novel drug-disease associations and repurpose 
approved drugs for new indications. This approach 
allows for the rapid identification of potential 
therapeutic options and reduces the time and cost 
required for preclinical and clinical development (64, 65). 

5. Predictive ADME-Tox Modeling: AI techniques can 
predict the absorption, distribution, metabolism, 
excretion, and toxicity (ADME-Tox) properties of 
compounds. By training on large datasets of compound 
properties and experimental data, AI models can predict 
the pharmacokinetic and toxicological profiles of new 
compounds. This helps in identifying potential safety 
concerns and optimizing lead compounds early in the 
drug discovery process (66, 67). 

3.3.5.5 Utilizing genomics and proteomics data for 
AMR prediction 

Genomics and proteomics data provide valuable 
insights into the genetic and molecular mechanisms 
underlying AMR. By analyzing genomic sequences and 
proteomic profiles of microbial strains, researchers can 
identify genetic markers, resistance genes, and 
molecular pathways associated with AMR. Genomic 
data, including whole-genome sequencing (WGS) and 
metagenomic sequencing, can provide insights into the 
genetic basis of AMR (68). By comparing the genomic 
sequences of resistant and susceptible strains, 
researchers can identify genetic variations, mutations, 
and mobile genetic elements associated with resistance. 
Bioinformatics tools and machine learning algorithms 
can analyze these genomic features to predict the 
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likelihood of AMR and guide treatment decisions (69, 
70). 

The resistome refers to the collection of all resistance 
genes present in microbial genomes or metagenomic 
samples (71). HTS technologies enable researchers to 
profile the resistome and identify the repertoire of 
resistance genes within a microbial community. By 
analyzing the resistome, researchers can predict the 
potential resistance phenotypes and monitor the spread 
of resistance genes in various environments (72, 73). In 
addition, transcriptomic analysis, such as RNA 
sequencing (RNA-seq), can provide insights into the gene 
expression patterns associated with AMR. By comparing 
the transcriptomes of resistant and susceptible strains, 
researchers can identify differentially expressed genes 
and pathways involved in resistance mechanisms. This 
information can be used to predict AMR phenotypes and 
understand the regulatory networks underlying 
resistance (74, 75). Proteomics data can also contribute 
to AMR prediction by characterizing the protein 
expression profiles of resistant strains. Mass 
spectrometry-based proteomics enables the 
identification and quantification of proteins involved in 
resistance mechanisms. By comparing the proteomes of 
resistant and susceptible strains, researchers can identify 
differentially expressed proteins, post-translational 
modifications, and protein-protein interactions related 
to AMR (76, 77). 

Integration of genomics, transcriptomics, proteomics, 
and other omics data can provide a comprehensive view 
of AMR mechanisms. By combining multiple layers of 
molecular information, researchers can identify key 
genetic variations, gene expression patterns, and protein 
interactions contributing to resistance. Integrated omics 
approaches, along with advanced data integration and 
machine learning techniques, can enhance AMR 
prediction and facilitate the development of 
personalized treatment strategies (78, 79). 

3.3.5.6 AI-guided approaches for personalized 
medicine in AMR 

AI plays a crucial role in advancing personalized 
medicine approaches for AMR. By leveraging AI 
algorithms, researchers can analyze diverse patient data, 
including genomics, clinical information, and microbial 
profiles, to develop tailored treatment strategies for 
individuals. AI algorithms can analyze genomic data, such 
as WGS or metagenomic sequencing, to identify genetic 
markers and resistance mechanisms associated with 
AMR. By integrating genomic information with clinical 
data, AI models can aid in precise diagnosis, determining 
the most effective antimicrobial treatment based on the 
patient's genetic profile (80, 81). 

AI models can utilize machine learning techniques to 
analyze clinical and microbiological data to predict 
treatment outcomes for AMR infections. By 

incorporating features such as patient demographics, 
comorbidities, antimicrobial resistance profiles, and 
treatment regimens, AI algorithms can help clinicians 
make informed decisions about the most suitable 
antibiotic therapy for individual patients (82, 83). AI-
based models can analyze patient-specific data, including 
drug concentrations, pharmacokinetics, and clinical 
parameters, to optimize antimicrobial dosing through 
TDM. These models can help clinicians adjust dosages in 
real-time to ensure therapeutic efficacy while minimizing 
toxicity and the development of resistance (84, 85). 

AI-powered decision support systems can integrate 
patient data, clinical guidelines, and expert knowledge to 
assist healthcare providers in selecting the most 
appropriate antimicrobial treatment (86). These systems 
can aid in decision-making by considering factors such as 
resistance patterns, individual patient characteristics, 
and local epidemiology (87). AI algorithms can also 
analyze large-scale, real-time data from electronic health 
records, laboratory records, and public health databases 
to detect AMR trends and outbreaks (88). By identifying 
patterns and anomalies, AI models can facilitate early 
detection, enabling timely intervention and the 
implementation of appropriate infection control 
measures (89). 
 

5. Conclusion 

The application of AI in combating AMR within drug 
discovery and development shows significant potential 
in addressing the global AMR challenge. This narrative 
review underscores the capabilities of AI across 
different phases of the drug discovery and 
development continuum, encompassing target 
identification, lead optimization, and the prediction of 
drug resistance. Various studies have validated the 
efficacy of AI-based approaches in identifying new 
antimicrobial compounds and enhancing existing drugs 
to combat AMR. Furthermore, AI demonstrates 
promise in forecasting drug resistance and guiding 
personalized treatment strategies. Despite notable 
advancements in this domain, there exist challenges 
and limitations that warrant attention. Additionally, 
ensuring the interpretability and explainability of AI 
models remains pivotal, particularly in the context of 
regulatory approval and clinical implementation. 
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