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 ABSTRACT 
 

Oncoviruses utilize the host cell signaling pathways. The role of the host cellular kinases as the main signaling factors in 
the viral replication and assembly has been reported before. The c-Jun NH2-terminal kinases (JNKs) as members of the 
mitogen-activated protein kinase (MAPK) family are stress-activated protein kinases that can be triggered by radiation, 
growth factors, cell stress, and inflammatory cytokines. They are involved in the cell proliferation, migration/ invasion, 
various forms of cell deaths including apoptosis, autophagy, and necroptosis, and also cell survival-mediated cancer 
therapeutic resistance. The JNK pathway plays a key role in oncoviruses replication process. It can be triggered through viral 
infection and is involved in the replication of some viruses including herpes viruses and rotaviruses. It plays a key role in 
oncogenesis mechanism of oncoviruses by influencing both oncogenic events and tumor suppressive mechanisms. The 
present study aimed to highlight and increase our understanding regarding the effects of JNK pathway on the oncogenesis 
mechanism of oncoviruses including HBV, HCV, HTLV, HPV, KSHV, and EBV.  
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1. Introduction 

Cancer stem cells (CSCs) have been emerged 
recently as a new concept in oncogenesis (1). It is 
identified that CSCs are rare cells, which are able to 
generate and develop tumors (2). On the other hand, 
CSCs differentiate to endothelial cells for angiogenesis 
in tumor cells, and facilitate the proliferation, 
colonization, and migration of tumor cells (3, 4).  
Oncoviruses, utilize the host cell effectors and 
signaling pathways that control the host cell condition 
for effective infection (5, 6). Also, some reports 
assessed the role of the host cell kinases as the main 
signaling factors in the viral replication and assembly 
(7, 8). They modulate variety of the cellular signaling 
pathways, which are related to the regulation of gene 

expression and homeostasis of the cell, containing 
mRNAs and proteins synthesis (9).  

The c-Jun N-terminal kinases (JNKs) as members 
of the MAPK family are identified to control cell 
proliferation, migration/invasion, apoptosis, 
autophagy, necroptosis, pyroptosis, ferroptosis, and 
cell survival-mediated cancer therapeutic resistance 
(10). JNKs are a kind of stress-activated protein kinases 
(SAPKs), which can be triggered by radiation, growth 
factors, cell stress, and inflammatory cytokines (11). 
There are three genetic loci in human genome that 
encode JNK1-3 through alternative splicing of the 
related pre-mRNAs, each one has 2 to 4 isoforms (12). 
Three genes, namely JNK1 (MAPK8 or SAPK1), JNK2 
(MAPK9 or SAPK2) , and JNK3 (MAPK10 or SAPK3), 
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encode 10 different splice variants of JNK (13). JNK1, 
JNK2 and JNK3 are located on chromosomes 
10q11.22, 5q35.3 and 4q21.3, respectively. Although 
JNK1 and 2 are generally expressed in all human 
tissues, JNK3 is highly expressed in the brain cells and 
lower expression levels is seen in the testis and heart 
cells (14). JNKs have a proved redundancy function in 
phosphorylation of their substrates that consist of c-
Jun, ATF2, JunD, polycomb repressive complex 1 
(PRC1) (15), Akt (16), FoxO4, c-Myc, p53, NFATc2, 
STATs (17), IRS-1, histone H3 (18), SIRT1 (19), and 
some other proteins (9).  

Transforming growth factor‐β (TGF‐β) signaling 
pathway plays vital roles in the cellular biological 
processes such as apoptosis, proliferation, epithelial-
mesenchymal transition, differentiation, vascular 
disorders, organ fibrosis, and cancer (20). With regard 
to the tumorigenesis, it displays a dual function by 
exhibiting anti-tumor activity through inducing 
apoptosis and suppressing cell cycle (21). Moreover, it 
also acts during the late stages of oncogenesis and 
functions as a tumor inducer by enhancing tumor 
invasiveness and metastasis (22). TGF‐β cytokines 
(TGF‐β1, TGF‐β2, and TGF‐β3) bind to the type I and II 
serine-threonine kinase receptors and activate two 
diverse downstream pathways; SMAD-dependent and 
SMAD-independent. This signaling pathway can be 
disturbed by factors such as mutation and microbial 
interference (23).  

Discrepancy in the TGF-β signaling might be 
implicated in the progression of tumors in the viral 
persistent infection. For example, in the development 
of HBV persistent infections, HBx oncoprotein changes 
TGF-β signal pathway from the TβRI/pSMAD3C tumor-
inhibitor axis to the JNK/pSMAD3L tumorigenic path in 
the early phase of the persistent infections (24). 
Furthermore, the role of JNK1 over JNK2 in the 
pathogenesis of some human diseases such as 
diabetes is its activation by cytokines. It is a key 
mediator in the transition between obesity and type 2 
diabetes (T2D). Its role in free fatty acids and 
hyperglycemia, lung fibrosis, and cancer has been 
revealed (25).  

Recognition of the pathogen-associated molecular 
patterns (PAMPs) by the pattern recognition receptors 
(PRRs) stimulates innate immune cells and 
subsequently induces the chemokines and cytokines 
expression that directly target microbes. Amongst the 
PRRs, the Toll-like receptors (TLRs) have been well 
studied as the stimulation of all 10 TLRs activates the 
MAPK and NF-κB signaling pathways that are 
necessary for an effective immune system response 
against infections. 

The JNK pathway plays a key role in oncoviruses 
replication. It can be triggered through viral infection 

and is involved in the replication of some viruses 
including herpes viruses (26) and rotaviruses (27). 
However, it is revealed that JNK activation can induce 
(28) or suppress (29) the viral replication and 
represent a critical factor in the cell death triggered via 
certain chemotherapeutic compounds (30) and stress 
responses (31, 32). Therefore, it has the potential to 
either induce or suppress the viral replication (33). In 
this review we aimed to study and underscore the 
effects of oncoviruses including HBV,HCV, HTLV,HPV, 
KSHV, and EBV on JNK signaling pathway (34). 

1-1- Hepatitis B virus 

Hepatitis B virus (HBV) is a hepatotropic oncovirus 
containing a partially double-stranded circular DNA 
genome, which can be integrated into the host 
genomic DNA and causes hepatocellular carcinoma 
(HCC). This infection is one of the main factors in 
developing HCC; as epidemiological studies have 
revealed that around 50% of all HCC cases, are related 
to HBV infection (35).  

HBx is a non-structural protein encoded by HBV 
genome. It is involved in the induction of several host 
cell signaling pathways, such as the RAF/RAS/MAPK 
(36), JAK signal transducer and activator of 
transcription (STAT) (37) (38), mitogen-activated 
protein kinase 1 (MEKK1)/JNK (39), phosphoinositide 
3-kinase (PI3K)/AKT (40), and Notch1 signaling (41)  
pathways, leading to the development of tumor and 
cell survival.  

Autophagy is a protein degradative mechanism, 
which is essential for both the normal cellular 
hemostasis and eliminating the intracellular invading 
pathogens (42). Interestingly, several viruses including 
HBV are capable of regulating the cell autophagy 
pathway. HBx triggers autophagosome formation of 
the class I phosphatidylinositol 3-kinase 
(PI3K)/AKT/mTOR signaling pathway (43). In turn, the 
class III PI3K (VPS34)/beclin-1 signaling have shown to 
be essential for the HBx-related autophagosome 
development. Additional studies have demonstrated 
that HBx does not have any effect on the beclin-1 and 
VPS34 expression but it suppresses the coactivity of 
beclin-1/Bcl-2 through the JNK signaling (44). 
Furthermore, transfection studies revealed that HBx 
induces production of reactive oxygen species (ROS) 
(39). Moreover, suppression of ROS activity by the ROS 
scavenger N-acetylcysteine (NAC) inhibits both 
autophagosome development and JNK function (43).  

ROS-JNK signaling also demonstrated to play a key 
role in HBV-triggered autophagy and successive HBV 
replication (43). 

Interestingly, the increase in the TGF-β level might 
be associated with the progress of HCC in the 
persistent HBV infection (45). In the development of 
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HBx-induced carcinogenesis, HBx causes shifting of 
TGF-β signaling from the pSMAD3C/TβRI tumor-
inhibitor pathway to the pSMAD3L/JNK tumor-inducer 
pathway in the early chronic hepatitis B (CHB) 
infection (46). Based on the effects of HBx on TGF-β, 
some studies showed that suppression of HBx-related 
activation of pSMAD3L/JNK can make HCC cells 
sensitive to TGF-β and enhances its anti-tumor activity 
(45).  

Akt signaling has been revealed to be involved in the 
modulation of hepatic glucose metabolism (47). HBx 
can affect the Akt phosphorylation by the JNK 
signaling, resulting in induction of stress and 
inflammation in the hepatocytes (48). The JNK is 
recognized to mediate serine phosphorylation of 
insulin receptor substrate 1 (IRS-1), therefore, 
decreases the function of IRS-1 and its downstream 
signaling pathway including Akt (49). Also, a report has 
revealed that HBx-overexpressing in the liver of 
transgenic mice (HBxTg) can reduce the Akt 
phosphorylation and upregulate the JNK1 
phosphorylation, while JNK1 phosphorylation was 
reduced through null mutation of Inducible Nitric 
Oxide Synthase (INOS) (50, 51). Moreover, previous in 
vitro study has shown that HBx induces the cell death 
by triggering the JNKs- MLK3-(mitogen-activated 
protein kinase kinase 7) MKK7 signaling that induces 
FasL expression (48). Another study showed that HBx 
can suppress the cell proliferation and increase the 
apoptosis by Fas/FasL modulation in the rat epithelial 
cells (52). Interestingly, somez studies have reported 
that HBV particles, HBsAg, and HBeAg are able to 
interfere with the TLR signaling that can affect the JNK 
activation (53). 

Another HBV-encoded protein, HBsAg, can 
influence the TLR4 signaling pathway. Studies have 
shown that the LPSinduced phosphorylation of p38 
and JNK, and the degradation of IkB-α can be 
suppressed by HBsAg. Also, it has been reported that 
LPS-induced production of cytokines such as IL-6, IL-
12, and TNF-α could be suppressed via HBsAg (54). 

HBsAg may suppress the IL-12 production, especially 
via decreasing the effect of the MAPK-JNK pathway. 
This theory was investigated in 
monocytes/macrophages of the chronic hepatitis B 
patients and HBsAg-negative control healthy group 
(55). The inhibited TLR2-mediated JNK activation and 
IL-12 secretion were also reported in the CHB patients 
(55). The mechanisms that HBsAg inhibits the JNK–
MAPK signaling is not well known yet, but suggested 
to be via directly affecting the JNK or its upstream 
effectors or JNK function modification by influencing 
the inhibitory pathways in the cells (56). To explain the 
mechanisms in detail more assessment is needed.  

It was reported that Adaptor Related Protein 
Complex 1 Subunit Mu 1 (AP1M1) is upregulated in the 
HBV-transfected HepG2.215 cell line and AP1M1 
silencing in HepG2.215 cells causes the suppression of 
cell proliferation. Data proposed that AP1M1 is a 
crucial factor related to the progression of the liver 
cancer related to the HBV infection. Furthermore, it 
was reported that HBx increased the AP1M1 
expression in a JNK-dependent manner. The AP1M1 
increased protein kinase B phosphorylation, resulting 
in the acceleration of the cell proliferation (57). Major 
biological pathways involved in transforming activities 
of HBV are shown in Figure 1.  

 

 

 
Figure 1. Major biological pathways involved in transforming activities of HBV (Designed by Authors, 2024) 
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1-2- Hepatitis C virus 

Hepatitis C virus (HCV) is a single-stranded RNA virus 
that cannot integrate into the host cell genome. Since 
the virus life cycle is in the cytoplasm, its oncogenesis 
is likely to be limited in the cytoplasmic 
compartments, as indirect mechanisms (58). The 
immune system response to the kill the infected 
hepatocytes and following the regeneration process 
as well as chronic inflammation is crucial for the 
development and progression of the HCC related to 
HCV. In transgenic mice it has been demonstrated 
that, the HCV core protein can be implicated in the 
HCC development and might play a key role in HCC 
progression (59).  

The HCV core protein has the ability to upregulate 
the JNK pathway, leading to the stimulation of the 
hepatocyte regeneration through decreasing p21 
levels and increasing c-Myc expression (60). 
Moreover, the HCV core protein has the ability to 
upregulate the JNK pathway through a regulatory 
process involving vascular endothelial growth factor 
(VEGF) (61). The inflammatory response stimulated via 
HCV infection leads to the tumor progression, 
although it is a part of the host immune system. 
Commonly, HCV disrupts the host immune system and 
causes chronic inflammation in association with the 
persistent infection (62). Chronic inflammation leads 
to an abnormal frequent reaction and triggers the liver 
cell apoptosis and proliferation that is related to the 
subsequent progression of HCC (63, 64). Reduction of 
p21 half-life and high expression of c-Myc was 
reported in HCV core transfect cell culture as well as 
HCV core transgenic mice (65).  

Moreover, another encoded HCV protein, NS5A, 
appears to act as positive modulator of the JNK 

signaling through interacting with TNF receptor 
associated factor (TRAF) that might be involved in the 
HCV pathogenesis (66). In an experiment, Lin et al., 
revealed that HCV increases the secretion of TGF-β 
from hepatocytes in the overexpressed ROS and JNK 
condition (67). Binding of TNF-α to TNF receptor 1, 
forms complex I that involves TNFR death domain, 
TRAF2, cIAP-1, cIAP2, RIP1 and a dimeric ubiquitin 
binding enzyme combined of Ubc13. In turn, cIAP-
induced K63 ubiquitination of RIP1 activates TGF-β 
activated kinase 1 (TAK1) that triggers JNK by MAP 
kinase kinase 4/7 (MKK4/7) (68, 69). Additionally, this 
complex participates to the ROS signaling by 
decreased Rac1 and nicotinamide adenine 
dinucleotide phosphate oxidase.  

The increased level of ROS results in the extended 
stimulation of JNK through restricting the JNK 
phosphatases (70). Other studies have revealed the 
correlation between the TGF-β-associated Smad and 
JNK pathways (71) that can inhibit TGF-β-related 
growth suppression, in a manner required for 
oncogenesis (72). In the cell nucleus, JNK1 can 
modulate nuclear function of the Smad complexes 
that enhances binding of the Smad complex to DNA 
and mediates various gene responses to TGF-β to 
modulate the ECM-related genes expression that is 
involved in oncogenesis (73). Also, TGF-β stimulates 
indirect or non-Smad signaling pathway of TAK1 and 
JNK (74) such as regulation of transcriptional 
responses, and phosphorylation of cytoplasmic Smad 
proteins linker that is crucial in association of TGF-β 
signaling with the JNK pathway (75). Major biological 
pathways involved in transforming activities of HCV 
are shown in Figure 2. 

 

 
Figure 2. Major biological pathways involved in transforming activities of HCV (Designed by Authors, 2024) 
 

1-3- Human T cell Leukemia Virus-1 

Adult T-cell leukemia (ATL) has been recognized as a 
T-cell malignancy that is related to the human T-cell 

leukemia virus type 1 (HTLV-1) chronic infection (76). 
Matrix metalloproteinases (MMPs) degrade 
extracellular matrix that is a critical mechanism in the 
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invasiveness and metastasis of cancers (77). The 
MMP-7 also known as matrilysin, is a “minimal domain 
MMP” with ubiquitin-like activity towards the 
extracellular matrix components. Previous studies 
have revealed the high expression of MMP-7 in the 
ATL cells and lymph nodes of HTLV-1-infected patients 
as well as T-cell lines (78). It has also been reported 
that MMP-7 expression can be upregulated following 
the HTLV-1 infection thorough the HTLV-1 Tax protein, 
resulting in migration of the HTLV-1infected T cells 
(79). The Tax protein, as a transactivator of the cellular 
genes, can upregulate MMP-7 promoter activity but 
MMP-7 promoter activity can be down-regulated via 
deletion of the activator protein-1 (AP-1) binding site 
(80). It has been reported that Tax can bind to the AP-
1 binding site of MMP-7 similar to JunD. Inline, studies 
showed high levels of AP-1 binding proteins, such as 
JunD in T-cell lines associated with ATL (related to 
HTLV-1) cells (81). The MMP-7 activation might be 
decreased through the inhibition of JunD signaling 
pathway or be increased via JunD homodimers (82). 
Previous studies have shown that blockade in JunD 
through the small interfering RNA (SiRNA) can inhibit 
MMP-7 expression in the HTLV-1-infected T-cell lines 
(83). Overall, these studies suggest that the 
stimulation of MMP-7 through Tax can be modulated 
via JunD and also MMP-7 can promote visceral 
invasion in the ATL patients. 

Another protein encoded by HTLV-1 is bZIP (HBZ) 
that is suggested to be associated with proliferation of 
T lymphocyte. The C-terminal zipper domain of HBZ 

interacts with c-Jun (84) resulting in a decrease in c-
Jun DNA-binding activity and inhibition of 
transactivating activity of AP-1. It is not clear yet that 
the inhibitory effect of HBZ-SP1 is due to its weak 
DNA-binding activity or its ability to interact with other 
cellular elements to inactive nuclear bodies (85). A 
HBZ-SP1 mutant with specific residues in the 
regulatory and DNA-binding domain, which was 
replaced for conforming c-Fos amino acids, increases 
the potential activity of the DNA-binding of the HBZ-
SP1/c-Jun heterodimer (86). Moreover, this study 
revealed that the inhibition of c-Jun activity in vivo is 
mostly related to the sequestration of the HBZ-SP1-c-
Jun to HBZ-NBs. 

The N-terminal motif (LXXLL) of HBZ mediates the 
activation of TGF-β signaling pathway. The HBZ 
increases the p300/Smad3 complex remarkably and 
overcomes the suppression of the TGF-β response by 
Tax protein. Similar to TGF-β, HBZ expression 
increases the transcription of Pdgfb, Ctgf, Foxp3, Sox4, 
Tsc22d1 and Runx1 genes but suppresses the 
transcription of Id2 gene. In naive T cells, HBZ induces 
the Foxp3 expression by the Smad3-dependent TGF-β 
signaling pathway. Data were proposed that HBZ 
enables HTLV-1 virus to convert the infected T 
lymphocyte cells into the regulatory cells by 
enhancing the TGF-β signaling and Foxp3 gene 
expression that might help HTLV-1 persistency. Major 
biological pathways involved in transforming activities 
of HTLV are shown in Figure 3.  

 

 

 
Figure 3. Major biological pathways involved in transforming activities of HTLV (Designed by Authors, 2024) 
 

1-4- Epstein-Barr virus 

Epstein-Barr virus (EBV) belongs to the 
Herpesviridae family and is related to several human 
malignancies such as nasopharyngeal carcinoma 

(NPC), Burkitt’s lymphoma (BL), and gastric carcinoma 
(87). After primary infection, EBV can appear as a 
latent infection for a lifelong in B cells with potential 
reactivation in the specific situations, especially 
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immune suppression (88). Switching EBV infection 
from the latency phase to the lytic cycle is mediated 
via the expression of Zta immediate-early protein, 
which is also named as ZEBRA and BZLF1 (89). The Zta 
protein acts as a transcription activator that has 
partially the same amino acid sequence as leucine 
zipper family of transcription elements such as c-Fos 
and c-Jun (37).  

EBV encodes latent membrane protein 1 (LMP1), 
that is an oncoprotein considerably expressed in BL 
and NPC (90). The LMP1 has been recognized as an 
integral membrane protein that is crucial for the EBV-
induced B-cells and fibroblasts immortalization and 
transformation (91). Studies using LMP1-expersion 
cell line have revealed that LMP1 increased ROS 
through Akt/PI3K signaling pathway resulting in 
increased expression of the genes involved in 
glycolysis (92). A study revealed that LMP1 may 
activate NAD(P)H oxidases (NOX) and upregulate ROS 
in EBV-associated malignancies (93). Assessment of 
NOX expression revealed that NOX modulatory 
subunit p22phox expression increased pronouncedly 
in the cell transected by LMP1 through JNK-dependent 
and -independent pathways (94).  

The LMP1 triggers the activation of the AP-1 
transcription factor, a heterodimer of Jun/Fos or 
homodimer of Jun/Jun proteins. The effect of LMP-1 
on AP-1 is through the JNK pathway, except for the 
extracellular signal-regulated kinase (Erk) signaling 
pathway (95). Therefore, LMP1 can induce the 
activation of the c-Jun N-terminal transactivation 
domain that is identified to be triggered through the 
JNK-mediated phosphorylation (96).  

Previous experiments demonstrated that C-terminal 
domain of LMP1 is crucial for the activation of AP-1. 
Moreover, the study using LMP1 mutant showed that 
JNK-induced transactivation of AP-1 is the direct result 
of LMP1-stimulated signaling (97). Additionally, 
through a tetracycline-modulated LMP1 allele, 
researchers showed that JNK is an element of the 
LMP1 signaling pathway in B cells immortalization 
(98). Taken together these data demonstrated a new 
function of LMP1 in the JNK/SEK/AP-1/c-Jun pathway 
that increases our knowledge regarding the potential 
function of LMP1 in immortalization of B cells (99). 
Major biological pathways involved in transforming 
activities of EBV are shown in Figure 4.  

 

 
Figure 4. Major biological pathways involved in transforming activities of EBV (Designed by Authors, 2024) 
 

1-5- Human papillomaviruses  

Human papillomavirus (HPV) infection is a major 
cause of benign and cancerous proliferative lesions of 
the mucosal epithelium. In 2018, cervical cancer was 
known as the second most common cancer in women 
living in developing countries with approximately 
311000 death (100). The epidemiological and 
experimental studies demonstrated that HPV 
infection is the main factor in cervical cancer 
development and progression (101). Especially, the 

HPV types 16 and 18 have been known as the most 
high-risk HPVs and are the main contributing agents in 
more than 90% of all cervical cancers.  

Dysregulated expression of HPV oncoproteins E6 
and E7 is the most important etiology of cervical 
cancer (102). Furthermore, stimulation of the 
Wingless type (Wnt)/β-catenin signaling pathway has 
been suggested to be involved in cervical 
tumorigenesis following the triggered signal in a multi-
step mechanism (103), although the details of 
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molecular process of cervical cancer development 
remain unclear. Wnt-11 has been known as an 
enhancer of the Wnt signaling pathway that plays a 
critical role in cervical oncogenesis (104). Wnt-11 and 
HPV E6 protein have been reported to be upregulated 
in a condition, which is related to the development of 
cervical cancer and is significantly associated with 
cancer phase, metastasis, tumor measures, and HPV 
infection (105). Wnt-11 expression reported to be 
significantly correlated with HPV E6 expression in 
most of the cervical cancer samples (106). Also, Wnt-
11 reported to be accompanied with the expression of 
P-JNK1, cell propagation, developed cervical cancer, 
and invasion (107). These outcomes suggest that the 
upregulated expression of Wnt-11 reported in tumor 
cells can result in the phosphorylation and stimulation 
of JNK-1 and potentially enhances the cervical cancer 
cell propagation and invasion by triggering the 
JNK/Wnt signaling (108). Therefore, Wnt-11 can be a 
novel target for the treatment of cervical cancer. 

The E6 and E7 oncoproteins of HPV-16 promoted 
the activation of Akt, P85S6K, P70S6K, mTOR, JNK, and 
c-Jun. Knockdown of C-Jun by the specific siRNA, 
eliminated the HPV-16 oncoprotein-induced HIF-1α, 
VEGF, and IL-8 expression. Additionally, HIF-1α 
protein stability was promoted by HPV-16 
oncoproteins via blocking the proteasome 
degradation pathway, but knockdown of c-Jun 
abolished this effect (109). Furthermore, E6 and E7 
oncoproteins of HPV-16 amplified the quantity of c-
Jun binding to HIF-1α protein. 

Levan et al., confirmed that the cellular protein 
NFX1-123 is a regulator of the epithelial cell 
differentiation and consequently provides insight into 
the association between the HPV life cycle and 
epithelial differentiation (110). They recognized that 
NFX1-123 specifically affected the JNK signaling 
pathway and vigorously activated proteins within that 
cascade (111). Major biological pathways involved in 
transforming activities of HPV are shown in Figure 5.  

 

 
Figure 5. Major biological pathways involved in transforming activities of high-risk HPVs (Designed by Authors, 2024) 
 

1-6- Kaposi’s sarcoma-related herpesvirus 

Kaposi’s sarcoma-related herpesvirus (KSHV) or 
human herpes virus type 8 is identified to be 
associated with Kaposi’s sarcoma, a cancer of 
endothelial cells that is commonly seen in AIDS 
patients (112). In recent studies it has been 
demonstrated that KSHV can activate the 
JNK/ERK/MEK and p38 MAPK signaling through the 
primary infection of human umbilical vein endothelial 
cells known as HUVEC, and these pathways control the 
viral entry processes and viral lytic infection (113). The 
KSHV proteins can suppress the autophagy at various 
phases in different cells that clearly reveals to be 

associated with v-BCL2, FLIP/v-CFLAR and K7 (114, 
115). 

It has been reported that v-BCL2 and v-CFLAR/FLIP 
inhibit autophagy in the early phase by suppression of 
autophagosome maturation. Subsequently, it can 
inhibit differentiation of monocytes, which is reported 
in KSHV infection (116). Moreover, FLIP/v-CFLAR 
signaling can act similar to the cellular FLIP/CFLAR that 
might suppress the JNK/MAPK activity by interacting 
with the MAP2K7/MKK7 (117). 

Noticeably, it has been shown that a deletion in the 
coding region of JNK1/MAPK8 or JNK2/MAPK9 genes 
may result in the equilibrium of FLIP/CFLAR. 
Moreover, JNK/MAPK suppression could be an 
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approach for stabilizing the CFLAR viral protein (12, 
118). Furthermore, FLIP/v-CFLAR can trigger NF-ĸB 
and a reverse association has been reported between 
these two signaling pathways (119).  

v-BCL2, as its cellular homolog, suppresses the 
autophagy through binding to BECLIN1 but 
independently from BCL2. v-BCL2 may not be apart 
from BECLIN1 in the starvation situation. Certainly, v-
BCL2 does not have any site of phosphorylation via 

JNK1/MAPK8 (120). Although, cellular BCL2 
phosphorylation is facilitated through the 
JNK1/MAPK8, data showed that KSHV infection 
basically decreases the function of the isoform of JNK2 
p54/MAPK9 (121). It is important to clear that v-BCL2 
may interact with kinases that modulate JNK/MAPK 
phosphorylation and associate with the autophagy 
suppression via decreasing the ATG5 and CAST. Major 
biological pathways involved in transforming activities  

 

 
Figure 6. Major biological pathways involved in transforming activities of KSHV (Designed by Authors, 2024). 
 

5. Conclusion 

The JNK pathway plays a key role in the oncogenesis 
mechanism of oncoviruses by influencing both 
oncogenic events and tumor suppressive mechanisms. 
It has been shown that HBx/HBs Ag of HBV, LMP-1of 
EBV, v-BCL2 and v-CFLAR of KSHV, NS5A of HCV, HBZ of 
HTLV, and E6/E7 of HPV 16 may affect the function of 
JNK signaling pathway. Determining the viral proteins 
that affect the JNK signaling pathway may be a key 
factor to understand the role of the viral proteins during 
the carcinogenesis by this mechanism and may provide 
even greater insight into the cancers related to these 
viruses. The JNK signaling pathway will thereby add to 
the other targets available for the malignancy 
treatment related to the oncoviruses. Further studies 
are needed to clarify the impact of JNK signaling 
pathway in the viruses-related cancers. 
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