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 ABSTRACT 
 

Background and Aim: Dengue virus infection remains a health problem. Dengue Virus Non-Structural protein 1 (NS1) 
increases the release of proinflammatory cytokines that induce intestinal zonulin expression. As a result, the ZO-1 protein 
translocates to the cytoplasm, which increases enterocyte permeability. This study aimed to investigate the effects of 
dengue NS1 on intestinal zonulin and ZO-1 expression, intestinal weight, and serum LPS. 

Materials and Methods: This experiment used 18 ddY mice with a pre-posttest control group design. Mice were randomly 
divided into control (C), PBS (T1), and PBS+NS1 (T2) groups. Mice in the T1 and 2 groups were intravenously injected with 
500 µL PBS and 50 µg NS1, respectively. Blood samples were collected before and after the three-day treatment. The 
intestines were weighted directly and were then embedded with formalin for immunostaining. Serum LPS were determined 
using ELISA. Data were analyzed using paired t-test and ANOVA.  

Results:  The T2 group had the highest zonulin expression (histoscore=8) compared to the T1 (histoscores=7.33) and C 
(histoscore=6.33) groups but were not significant (P=0.135). Intestinal ZO-1 expression did not increase in the T groups 
compared to the C group (P=0.368). The intestine weight in the C group was significantly lower than the T group (P=0.001). 
After treatment, serum LPS levels in the T2 group were higher (0.34 pg/mL) than before treatment (0.12 pg/mL; P=0.118), 
but not in the T1 group (P=0.384). Meanwhile, there was a significant decrease in serum LPS levels in the C group (P=0.046). 

Conclusion:  injection of 50 µg dengue virus NS1 has a minor effect on intestinal permeability in ddY mice.  
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1. Introduction 

Dengue virus infection (DVI), which is caused by the 
dengue virus (DENV), remains a health problem in 
tropical and subtropical countries, including Indonesia 
(1, 2). The DVI incidence reaches 58-96 million 
worldwide (3) and increases with urbanization (4), 
global warming (5), and tourism (6). The DVI mortality 
reaches 9,000 – 24,000 people each year (3). The 

definitive treatment and vaccination for DVI have not 
been established because the mutation rate of DENV 
genome structure remains high, and the DVI 
pathogenesis remains unclear (7-9). However, the 
viral structure may be involved in DVI pathogenesis 
(10). 
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The DENV genome has three structural proteins 
(capsid, membrane, and envelope) and seven non-
structural proteins (NS1, NS2A, NS2B, NS3, NS4A, 
NS4B, and NS5) (10). The NS2A and B protein plays 
vital roles in RNA synthesis and in breaking down the 
transcriptional protein chain into structural and non-
structural proteins with the NS3 protein (11, 12). 
Meanwhile, the NS4A and B proteins regulate 
replication (13) and interact with other viral proteins 
for replication (14). The NS5 and NS1 proteins function 
as an RNA-dependent RNA polymerase (15) and a 
trigger factor for severe DVI, respectively (16). In 
addition, the NS1 can activate immunocytes such as 
monocytes, B cells, and dendritic cells through Toll-
like receptor (TLR) activation, mainly TLR-4 (17, 18), 
TLR-2, and 6 (19), resulting in the release of 
proinflammatory cytokines (20).  

A previous study reported that increased blood 
Lipopolysaccharide (LPS) levels are detected in 
patients with severe DVI, but the mechanism is not 
fully understood (21). Theoretically, the LPS is the 
outer wall structure of gram-negative bacteria, 
composed of lipid A, oligosaccharide core, and O 
antigen chain (22). The increased blood LPS levels may 
occur due to damage of the intestinal epithelium (23) 
or related to immune activation (24), which induces 
the synthesis and secretion of proinflammatory 
cytokines through interaction with the TLR4 (25). 

Dengue virus can infect keratinocytes, monocytes, 
dendritic cells, and macrophages (26). Dengue virus 
replication generates new virions and viral particles 
such as NS-1 (10). Non-structural 1 activates 
immunocytes to produce proinflammatory cytokines 
such as interleukin 1 (IL-1), Tumor necrosis factor-α 
(TNF-α), and IL-6 through TLR-4 activation (18, 20, 27). 
These cytokines enter the blood circulation and affect 
various body organs, including the gut. It has been 
reported that those proinflammatory cytokines 
promote intestinal zonulin expression (28). 

Zonulin is a structural protein with a 42 kDa 
molecule weight, which functionally regulates cell 
interconnection and permeability for ion, water, and 
nutrient transports (29, 30). This protein is highly 
expressed in the small intestine and liver (31) and has 
a high homology with the zonula toxin of Vibrio 
cholerae (30). Moreover, high expression of zonulin 
triggers the translocation of zonula occluden-1 (ZO-1) 
from the outer cytoplasm into the inner cytoplasm of 
enterocytes (32).  

The zonula occluden-1 is a family member of 
membrane-associated guanylate kinase)-like proteins 
with a 220 kDa molecular weight. This protein 
interacts with other structural proteins to form the 
intestinal tight junction (TJ) between the cell 
membrane and the cytoskeleton (33). During 

inflammation with various causes, increased TNF-α 
and IL-6 levels can cause high expression of the 
intestinal zonulin, leading to translocation of ZO-1 to 
open the gap of enterocyte connection and followed 
by microbial translocation, including gram-negative 
bacteria (34, 35). For example, severe acute 
respiratory syndrome of coronavirus 2 infection 
increases zonulin expression leading to intestinal 
leakage (36, 37). However, limited studies investigated 
the role of DENV NS1 on intestinal zonulin expression, 
which was linked to intestinal leakage in response to 
cytokine storms. Therefore, this study aimed to 
investigate the effects of DENV NS1 injection on 
intestinal zonulin and ZO-1 expression, wet intestinal 
weight, and serum LPS level in ddY mice. Specifically, 
we would evaluate the roles of intestinal zonulin and 
ZO-1 expression and serum LPS level as potential 
markers for intestinal leakage. Intestinal leakage has 
been reported in patients with DVI (21) in which the 
NS1 protein is probably involved in intestinal leakage. 
Therefore, the novelty of our study is that the NS1 
protein might induce intestinal leakage by changing 
the expression of zonulin and ZO-1.  

 

2. Materials and Methods 

This laboratory experiment used ddY mice with a 
pre-posttest control group design for LPS 
measurement and a posttest-only control group 
design for wet intestinal weight, zonulin, and ZO-1 
expression.  This research study was part of a big 
research project related to DVI pathogenesis. The 
Integrated Research and Testing Laboratory (LPPT) 
Universitas Gadjah Mada, Yogyakarta, Indonesia, 
provided these mice, and the research study was 
conducted at the same place. The sample size was 
calculated using the resource equation approach with 
the formula n = DF/k + 1 (DF= degrees of freedom, K= 
number of groups) to obtain 18 mice for all groups in 
this experiment (38). The mice selection used the 
inclusion criteria: healthy male, 8-10 weeks old, and 
weighing 20-30 g. Selected mice were randomly 
divided into control (C) and treatment (T1 and T2) 
groups. The mice were acclimatized with the following 
conditions: each group was housed in a plastic cage, 
sawdust bedding, 25oC temperature, > 50% humidity, 
12/12 hours cycle of dark and light, and keeping away 
from electronic equipment and noise. All mice were 
given a grower animal feed (JAPFA Comfeed 
Indonesia, Comfeed AD II) with 10% body weight (bw) 
per day and drinking water ad libitum. The T1-2 groups 
were intravenously injected with a single dose of 500 
µL PBS (Sigma Life Science, USA) only and 500 μL PBS 
(Sigma Life Science, USA) + 50 µg NS1 DENV2 (R&D, 
USA), respectively.  
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Intestinal Weight Measurement  

In the day 3 treatment, all mice were sacrificed and 
the intestine was taken using the necropsy technique, 
according to Scudamore, Busk, et al. (39). The 
intestine was directly weighted using a Mettler Toledo 
digital scale (ME802E, Switzerland). 

Immunohistochemical (IHC) Staining of Intestinal 
Zonulin and Zonula Occludens 1 

The immunostaining method in this research study 
used a standard method routinely conducted in the 
Anatomical Pathology Laboratory, Faculty of Medicine 
Universitas Sebelas Maret (UNS). After measurement 
of wet intestinal weight, the mice’s small intestines 
were embedded using paraffin and cut into 5 µm 
thickness. After fixation on the object glass, 
deparaffination was carried out and slides were 
incubated using an anti-zonulin primary antibody 
(Thermo Fischer, USA) for zonulin staining, while the 
ZO-1 staining used anti ZO-1 antibody (Thermo 
Fischer, USA), and using a secondary IgG antibody 
Starr Trek Universal HRP Detection System (Starr trek, 
Biocare Medical, USA), according to the 
manufacturer's instructions. The slides were then 
stained with 3,3'-diaminobenzidine (Starr trek, 
Biocare Medical, USA) and counter-stained with 
Hematoxylin and eosin staining (Merck, Germany). 
The Histoscore for positive cells expressing zonulin 
and ZO-1 was calculated by multiplication of the 
percentage of stained cells and the color intensity. The 
scoring of stained cells was assessed in the following 
manner: 0, 1, 2, 3, and 4 scores for 0%; 1-25%; 26-50%; 
51-75%; and 76-100% respectively. The color intensity 
was assessed 0 score: non stained, 1 score: stained 
with low intensity, 2 score: stained with moderate 
intensity, and 3 score stained with strong intensity. 

Measurement of Serum Lipopolysaccharide Levels 

Before and after treatment, 750 μL venous blood 
samples of all mice were taken from the orbital plexus, 

which were further processed to obtain mice serum. 
Mice serum LPS levels were determined using an ELISA 
kit (Abbexa, UK) according to the manufacturer's 
instructions.  

Statistical Analysis 

All collected data, such as wet intestinal weight, 
intestinal zonulin and ZO-1 expression, and serum LPS 
levels, were presented as mean ± SD and were 
analyzed using a JASP 0.16.0.0 free software 
(University of Amsterdam). The mean differences in 
LPS serum levels of the T1 and T2 groups were 
examined using the paired t-test, while intestinal 
weight was analyzed using the One-way ANOVA, 
followed by the Tuckey post hoc test. LPS serum data 
were examined using the Wilcoxon signed-rank tests. 
The Kruskal-Wallis was used to compare the mean 
intestinal zonulin and ZO-1 among groups and 
followed Dunn’s post hoc test with a p-value <0.05. 
For further analysis of statistical significance, the 
effect size and Bayes factor 10 (BF10) of all collected 
data were used (18). BF10 value > 1 indicates 
significance for all statistical analyses. The ɷ2 > 0.01 
was used to determine an effect size for the one-way 
ANOVA, Cohen’s d > 0.2 for the paired t-test, and rB > 
0.1 for the Wilcoxon signed-rank test.  

 

3. Results 

Table 1 indicated that administration of 50 µg DENV NS1 
slightly increased intestinal zonulin expression but did 
not affect intestinal ZO-1 expression. In addition, NS1 did 
not increase wet intestinal weight. The histoscore of 
intestinal zonulin expression increased, although not 
statistically significant (P=0.135). Intestinal ZO-1 
expression remained unchanged among groups. The 
mean intestinal weight in the T2 group was significantly 
higher than that of the C group (P<0.001, d=2.659, and 
BF10= 25.8), but there was no difference between the T2 
and T1 group (P=0.482, d=0.482, and BF10=0.685). 

 

 

Table 1. The comparison of intestinal weight, zonulin, and ZO-1 expression on mice treated with and without NS1 Ag. 

Variable C T1 T2 p 

Intestinal Zonulin Expression1 6.33 ± 1.97 a(NS) 7.33 ± 1.633 a(NS) 8 ± 0.00 a(NS) 0.135 

Intestinal ZO-1 Expression1 8 ± 0.00 a(NS) 7.33 ± 1.63 a(NS) 8 ± 0.00 a(NS) 0.368 

Intestinal weight (g)2 3,87 ± 0.58 a 5,19 ± 0.64 b(NS) 5.64 ± 0.77b(NS) 0.001* 

All data were presented as mean±SD. The Histoscore for positive cells expressing zonulin and ZO-1 was calculated by 
multiplication of the percentage of stained cells and the color intensity.    
1 analyzed using the Kruskal-Wallis test and followed by Dunn’s post hoc with P>0.05, a designated the comparison of C-T1, C-T2, 
and T1-T2.   
2 Analyzed using the One-way ANOVA test and followed by post hoc Tukey’s with P<0.05. a designated comparison of C-T1 and 
C-T2. b designated the comparison of T1-T2. * Statistically significant, BF10 = 34.2, ω2 = 0,537. 
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Figure 1 showed that the intestinal zonulin 
expression was similar among groups (P=0.135). 
However, higher expression of zonulin was observed 
in the T2 group (histoscore = 8 ± 0.00) compared to the 
T1 (histoscore = 7.33 ± 1.63) and C (histoscore = 6.33 
± 1.97) groups.  

In terms of ZO-1 expression, it had similar 
histoscores to the zonulin expression. Figure 2 showed 

that positive immunostaining of ZO-1 was similar 
among groups, and the histoscores did not differ 
significantly (P=0.368). The ZO-1 expression in the T2 
group (histoscore=8 ± 0.00) was similar to the ZO-1 
expression in the C group (histoscore=8±0.00). 
Meanwhile, the T1 group had lower ZO-1 expression 
(histoscore=7.33±1.63).  

 

 
Figure 1. Immunohistochemical staining of zonulin expression on mice intestine treated with and without NS1 Ag. Five µm 
thickness of intestine dissection was stained using an anti-zonulin antibody and was observed using a light microscope with 400x 
magnification. Yellow arrows designated positive immunostaining of zonulin in enterocytes. The histoscore of positive 
immunostaining was based on the percentage of cells expressing zonulin and color intensity. Each picture represented six 
mice/group and had an A. Histoscore 6.33 ± 1.97, B. Histoscore 7.33 ± 1.633, and C. Histoscore 8 ± 0.00 with P=0.135. 

 

 

 

 
Figure 2. Immunohistochemical staining of ZO-1 expression on mice intestine treated with and without NS1 Ag. Five µm thickness 
of intestine dissection was stained using an antiZO-1 antibody and was observed using a light microscope with 400x 
magnification. Yellow arrows designated positive immunostaining of ZO-1 in enterocytes. The histoscore of positive 
immunostaining was based on the percentage of cells expressing ZO-1 and color intensity. Each picture represented six 
mice/group and had an A. Histoscore 8 ± 0.00, B. Histoscore 7.33 ± 1.63, and C. Histoscore 8 ± 0.00 with P= 0.368. 
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Tables 2. Changes of LPS serum in mice treated with and without NS-1  

Variable Day P 
 1 4  

LPS (pg/mL)    
C2 0.66 ± 0.48 0.19 ± 0.1 0.046* 

T12 0.36 ± 0.43 0.69 ± 0.51 0.384** 

T21 0.12 ± 0.1 0.34 ± 0.3 0.118*** 

1Wilcoxon Signed Rank Test, 2paired t test. * Statistically significant with d=1.078, and BF10=2.221, ** d= 0.39 but it was not 
statistically significant with BF10=0.53, *** BF10=1.383 and rB=0.714 but statistically not significant. 

 

We examined LPS serum to confirm whether NS1 
treatment or not increased intestinal permeability. 
Table 2 indicated that NS-1 treatment increased 
intestinal permeability in the T2 group. LPS Serum 
levels in the T2 group significantly increased by 283% 
with BF10=1.383 and rB=0.714, but it was not 
statistically significant with P=0.118. The serum LPS 
levels in the T1 group significantly increased by 191% 
with d= 0.39, but it was not statistically significant with 
P=0.384 and BF10=0.53. Meanwhile, serum LPS levels 
in the C group decreased significantly (P=0.046, 
d=1.078, and BF10=2.221). 

 

4. Discussion 
Herein, we demonstrated that administration of 50 

µg NS1 and PBS slightly increased the expression of 
intestinal zonulin, but the expression of ZO-1 
remained unchanged in ddY mice. In addition, a similar 
result was found in the wet intestinal weight of ddY 
mice treated with the same dose of NS1. Meanwhile, 
LPS serum levels in ddY mice treated with NS1 were 
higher than in the control and PBS administration 
groups. Therefore, it suggests that NS1 injection has a 
minor effect on the permeability of the small intestine.   

Zonulin is a tight junction regulatory protein, which 
is highly expressed in the small intestine induced by 
various factors such as pathogens, intestinal bacteria, 
foods, and proinflammatory cytokines (31, 32). 
Previous studies reported that exposure of gram-
negative bacteria to the Wistar rats, New Zealand 
White rabbits, and Kunming mice induced zonulin 
expression in the enterocytes (40, 41). In contrast to 
those findings, our results showed that the expression 
of intestinal zonulin slightly increased in ddY mice 
treated with NS1. Our finding is in accordance with a 
previous study that 10 mg/kg of intravenous NS1 
injection in AG129 mice did not cause epithelial 
damage of the small intestine. Still, it accumulated in 
the hepatocytes (42). However, the author did not 
assess zonulin expression in the hepatocytes. The 
possible mechanism is that the NS1 has a higher 
binding affinity to the endothelial surface of the liver 
and the pulmonary blood vessels than that of the 
intestinal and brain endothelial cells (43).  

The ZO-1 is another structural protein that becomes 
a part of the TJ proteins to connect to the epithelial 
and endothelial cytoskeletons (44). Our study showed 
that intestinal ZO-1 expression in all mice groups 
remained stable. We did not find any similar research 
study that evaluated ZO-1 expression in mice treated 
with NS1. Our findings differ from an existing study 
that orally administering transmissible gastroenteritis 
virus to DLY-weaned piglets decreased intestinal ZO-1 
expression (45). The decreased ZO-1 expression is also 
detected in mice and rats treated with dextran sodium 
sulfate (46), trinitrobenzene sulfonic acid (47), and 
dinitrobenzene sulfonic acid (48). Although NS1 did 
not affect changes in ZO-1 expression in our study, 
several reports indicate that NS1 affects the 
expression of various substances. Intravenous and 
intraperitoneal injections of 50 µg NS1 into BALB/c 
mice increased the expression of endothelial 
macrophage migration inhibitory factor and MMP-9 
(49, 50). Furthermore, ddY mice were injected with 50 
µg NS1 intravenously, increasing hepatocyte zonulin 
expression (51). Altogether, it suggests that the NS1 
influences zonulin expression in a tissue-specific 
manner, and perhaps the small intestine is not a 
specific target of the NS1. 

A macroscopic examination of the small intestine is 
required to assess the NS-1 effect during DVI. Our 
finding indicated no difference in wet intestinal weight 
in ddY mice treated with PBS or NS1, although the wet 
intestine weight of both groups was heavier than the 
control group. Our results differ from previous 
research in that the small intestine was swollen in 
mice inoculated with dengue-antibodies immune 
complexes (52). The presence of PBS might cause an 
increase in wet intestinal weight in our study due to 
inhibitions of carboxylase activity and nutrient 
absorption. The phosphate ion inhibits the activity of 
the carboxypeptidase in the brush border of intestinal 
and pancreatic epithelial cells, which reduces the 
degradation and absorption of partially digested 
proteins (53). The undigested proteins, therefore, 
accumulate in the lumen and mucosal layer of the 
small intestine, leading to an increase in wet intestinal 
weight. Another possible reason is that NS1 
intravenous injection was predominantly found in the 
liver of mice, and line with the study performed by 
Alcon-LePoder and Drouet, et al. (54). Furthermore, 
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the NS1 is more likely to stick tightly to the endothelial 
surface of the liver and the pulmonary blood vessels 
than that of the intestinal and brain endothelial cells 
(43). In contrast, repeated infections of intact DENV 
may cause more severe disorders in the 
gastrointestinal tract than primary infection of intact 
DENV (52). 

In this study, we further evaluated serum LPS levels 
to determine whether the translocation of intestinal 
microbial and their products from the intestinal lumen 
to the blood circulation occurred in ddY mice treated 
with 50 µg NS1. Our results indicated that NS1 
administration significantly increased serum LPS levels 
compared to the ddY mice treated with PBS only and 
the control groups. To our knowledge, no published 
article reported the serum LPS level in mice treated 
with NS1. In the clinical setting, research by van de 
Weg et al. (2013) in Sao Paulo, Brazil, showed that 
there were significantly increased blood LPS levels in 
severe DVI patients (24). Our study's results of 
intestinal zonulin and ZO-1 expression and wet 
intestinal weight indicate that LPS did not originate 
from the small intestine. We think the LPS probably 
comes from the colon lumen for two reasons. Firstly, 
microbial translocation in severe dengue is associated 
with the activation of the immune system. Immune 
activation increases proinflammatory cytokines that 
trigger increased intestinal permeability (24). 
Secondly, leukocyte infiltration of the colon 
submucosa was found in AG129 mice infected with 
DENV-3 (55). However, we cannot confirm it because 
we did not examine pathological processes in the 
colon of mice treated with the NS1. We have some 
limitations in our study. At first, we did not examine 
the presence of NS1 in the liver and intestines, which 
directly influenced changes in zonulin and ZO-1 
expression. Secondly, we did not investigate zonulin 
and ZO-1 expression in the colon and wet colon 
weight, which may cause epithelial damage and 
increase serum LPS levels. 

 

5- Conclusion  

Intravenous injection of 50 µg DENV NS1 increases 
serum LPS levels but does not increase zonulin 

expression, ZO-1 expression, and wet intestinal weight. 
It suggests that NS1 injection has a minor effect on the 
permeability of the small intestine. Further research is 
required to determine the presence of NS1 in the small 
intestine and the expression of zonulin and ZO-1 in the 
colon. In addition, we need histopathological staining to 
evaluate epithelial integrity in the colon. 
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