year 16, Issue 6 (November - December 2022)                   Iran J Med Microbiol 2022, 16(6): 581-586 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shokoohizadeh L, Rabiei M, Baharifar A, Keramat F, Ali L, Alikhani M Y. Evaluation of the Virulence Genes in Quinolone and Fluoroquinolones- resistant Uropathogenic Escherichia coli Isolates. Iran J Med Microbiol 2022; 16 (6) :581-586
URL: http://ijmm.ir/article-1-1699-en.html
1- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
2- Department of Pharmacology, Hamadan University of Medical Sciences, Hamadan, Iran
3- Brucellosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
4- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
5- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran , alikhani43@yahoo.com
Abstract:   (1084 Views)

Background and Aim: Uropathogenic Escherichia coli (UPEC) is the most prevalent causative agent of urinary tract infections (UTIs) in both community and hospital settings. Annually about 150 million people globally develop UTIs, resulting in increased healthcare costs. The current study examined the identification and the frequency distribution of virulence factors among fluoroquinolones-resistant (FQs-R) and fluoroquinolones-susceptible (FQs-S) UPEC strains in Hamadan hospitals, west of Iran.
Materials and Methods: One hundred-seventy urine samples were collected consecutively from inpatients at three hospitals in Hamadan from March to September 2018. The UPEC isolates were identified using biochemical tests and polymerase chain reaction (PCR). The disk diffusion and the broth microdilution methods determined the antimicrobial susceptibility and the minimum inhibitory concentration (MIC) of Ciprofloxacin. The multiplex-PCR method investigated the prevalence of pap, aer, and hly genes.
Results: Among 170 urine samples collected from inpatients, E. coli was the most common isolate, with a frequency of 125 (73.5%). Resistance to Nalidixic acid and fluoroquinolones, including Ciprofloxacin, Norfloxacin, and Ofloxacin, was detected in 88.8%, 71.2%, 70.4%, and 68.8% of UPEC isolates, respectively. The prevalence of hly and pap genes in FQs-R strains was significantly lower than in FQs-S strains.
Conclusion: The high-level antibiotic resistance to quinolones & fluoroquinolones and heterogeneity of virulence genes among clinical UPEC isolates need strong attention.

Full-Text [PDF 540 kb]   (479 Downloads) |   |   Full-Text (HTML)  (514 Views)  
Type of Study: Original Research Article | Subject: Medical Bacteriology
Received: 2022/03/14 | Accepted: 2022/06/29 | ePublished: 2022/09/9

References
1. Nöllmann M, Crisona NJ, Arimondo PB. Thirty years of Escherichia coli DNA gyrase: From in vivo function to single-molecule mechanism. Biochimie. 2007;89(4):490-9. [DOI:10.1016/j.biochi.2007.02.012] [PMID]
2. Andersson MI, MacGowan AP. Development of the quinolones. J Antimicrob Chemother. 2003;51(suppl_1):1-11. [DOI:10.1093/jac/dkg212] [PMID]
3. Da Silva G, Mendonça N. Association between antimicrobial resistance and virulence in Escherichia coli. Virulence. 2012;3(1):18-28. [DOI:10.4161/viru.3.1.18382] [PMID]
4. Hoban DJ, Nicolle Le Fau - Hawser S, Hawser S Fau - Bouchillon S, Bouchillon S Fau - Badal R, Badal R. Antimicrobial susceptibility of global inpatient urinary tract isolates of Escherichia coli: results from the Study for Monitoring Antimicrobial Resistance Trends (SMART) program: 2009-2010. Diagn Microbiol Infect Dis. 2011;70(4):507-11. [DOI:10.1016/j.diagmicrobio.2011.03.021] [PMID]
5. Velasco M, Horcajada Jp Fau - Mensa J, Mensa J Fau - Moreno-Martinez A, Moreno-Martinez A Fau - Vila J, Vila J Fau - Martinez JA, Martinez Ja Fau - Ruiz J, et al. Decreased invasive capacity of quinolone-resistant Escherichia coli in patients with urinary tract infections. Clin Infect Dis. 2001;33(10):1682-6. [DOI:10.1086/323810] [PMID]
6. Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother. 2005;56(3):463-9. [DOI:10.1093/jac/dki245] [PMID]
7. Ruiz J. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother. 2003;51(5):1109-17. [DOI:10.1093/jac/dkg222] [PMID]
8. Drews SJ, Poutanen SM, Mazzulli T, McGeer AJ, Sarabia A, Pong-Porter S, et al. Decreased Prevalence of Virulence Factors among Ciprofloxacin-Resistant Uropathogenic Escherichia coli Isolates. J Clin Microbiol. 2005;43(8):4218-20. [DOI:10.1128/JCM.43.8.4218-4220.2005] [PMID] [PMCID]
9. Melican K, Sandoval R, Kader A, Josefsson L, Tanner G, Molitoris B, et al. Uropathogenic Escherichia coli P and Type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLOS Pathog. 2011;7(2):e1001298. [DOI:10.1371/journal.ppat.1001298] [PMID] [PMCID]
10. Mobley HL, Green DM, Trifillis AL, Johnson DE, Chippendale GR, Lockatell CV, et al. Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun. 1990;58(5):1281-9. [DOI:10.1128/iai.58.5.1281-1289.1990] [PMID] [PMCID]
11. Crosa JH. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev. 1989;53(4):517-30. [DOI:10.1128/mr.53.4.517-530.1989] [PMID] [PMCID]
12. Mahon C, Lehman D, Manuselis G. Textbook of diagnostic microbiology-E-Book: Elsevier Health Sciences; 2014.
13. Majlesi A, Kakhki RK, Mozaffari Nejad AS, Mashouf RY, Roointan A, Abazari M, et al. Detection of plasmid-mediated quinolone resistance in clinical isolates of Enterobacteriaceae strains in Hamadan, West of Iran. Saudi J Biol Sci. 2018;25(3):426-30. [DOI:10.1016/j.sjbs.2016.11.019] [PMID] [PMCID]
14. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. PA: Clinical and Laboratory Standards Institute; 2018.
15. Yamamoto S, Tsukamoto T, Terai A, Kurazono H, Takeda Y, Yoshida O. Distribution of Virulence Factors in Escherichia coli Isolated from Urine of Cystitis Patients. Microbiol Immunol. 1995;39(6):401-4. [DOI:10.1111/j.1348-0421.1995.tb02219.x] [PMID]
16. Shenagari M, Bakhtiari M, Mojtahedi A, Atrkar Roushan Z. High frequency of mutations in gyrA gene associated with quinolones resistance in uropathogenic Escherichia coli isolates from the north of Iran. Iran J Basic Med Sci. 2018;21(12):1226-31.
17. Badamchi A, Javadinia S, Farahani R, Solgi H, Tabatabaei A. Molecular Detection of Plasmid Mediated Quinolone Resistant Genes in Uropathogenic E coli from Tertiary Referral Hospital in Tehran Iran. Arch Pharm Ther. 2019;1(1):19-24. [DOI:10.33696/Pharmacol.1.005]
18. Malekzadegan Y, Khashei R, Sedigh Ebrahim-Saraie H, Jahanabadi Z. Distribution of virulence genes and their association with antimicrobial resistance among uropathogenic Escherichia coli isolates from Iranian patients. BMC Infect Dis. 2018;18(1):1-9. [DOI:10.1186/s12879-018-3467-0] [PMID] [PMCID]
19. Dehbanipour R, Khanahmad H, Sedighi M, Bialvaei AZ, Faghri J. High prevalence of fluoroquinolone-resistant Escherichia coli strains isolated from urine clinical samples. J Prev Med Hyg. 2019;60(1):E25-E30.
20. Piatti G, Mannini A, Balistreri M, Schito Anna M. Virulence Factors in Urinary Escherichia coli Strains: Phylogenetic Background and Quinolone and Fluoroquinolone Resistance. J Clin Microbiol. 2008;46(2):480-7. [DOI:10.1128/JCM.01488-07] [PMID] [PMCID]
21. Johnson James R, Owens K, Gajewski A, Kuskowski Michael A. Bacterial Characteristics in Relation to Clinical Source of Escherichia coli Isolates from Women with Acute Cystitis or Pyelonephritis and Uninfected Women. J Clin Microbiol. 2005;43(12):6064-72. [DOI:10.1128/JCM.43.12.6064-6072.2005] [PMID] [PMCID]
22. Horcajada JP, Soto S Fau - Gajewski A, Gajewski AF, Smithson A, Smithson A Fau - Jiménez de Anta MT, Jiménez de Anta Mt Fau - Mensa J, et al. Quinolone-resistant uropathogenic Escherichia coli strains from phylogenetic group B2 have fewer virulence factors than their susceptible counterparts. J Clin Microbiol. 2005;43(6):2962-4. [DOI:10.1128/JCM.43.6.2962-2964.2005] [PMID] [PMCID]
23. Moreno E, Prats G, Sabaté M, Pérez T, Johnson JR, Andreu A. Quinolone, fluoroquinolone and trimethoprim/sulfamethoxazole resistance in relation to virulence determinants and phylogenetic background among uropathogenic Escherichia coli. J Antimicrob Chemother. 2006;57(2):204-11. [DOI:10.1093/jac/dki468] [PMID]
24. Oliveira FA, Paludo Ks Fau - Arend LNVS, Arend Ln Fau - Farah SMSS, Farah Sm Fau - Pedrosa FO, Pedrosa Fo Fau - Souza EM, Souza Em Fau - Surek M, et al. Virulence characteristics and antimicrobial susceptibility of uropathogenic Escherichia coli strains. Genet Mol Res. 2011;10(4):4114-25. [DOI:10.4238/2011.October.31.5] [PMID]
25. Kawamura-Sato K, Yoshida R, Shibayama K, Ohta M. Virulence genes, quinolone and fluoroquinolone resistance, and phylogenetic background of uropathogenic Escherichia coli strains isolated in Japan. Jpn J Infect Dis. 2010;63(2):113-5. [DOI:10.7883/yoken.63.113] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb | Publisher: Farname Inc