سال 16، شماره 6 - ( آذر - دی 1401 )                   جلد 16 شماره 6 صفحات 565-557 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ramazani R, Izadi Amoli R, Taghizadeh Armaki M, Pournajaf A, Kaboosi H. A molecular New Update on the Biofilm Production and Carbapenem Resistance Mechanisms in Clinical Pseudomonas aeruginosa Isolates. Iran J Med Microbiol 2022; 16 (6) :557-565
URL: http://ijmm.ir/article-1-1696-fa.html
رمضانی راضیه، ایزدی آملی رابعه، تقی زاده ارمکی مجتبی، پورنجف اباذر، کابوسی حامی. پیدایش جدید مولکولی در تولید بیوفیلم و مکانیسم ‌مقاومت به کارباپنم در جدایه‌های بالینی سودوموناس آئروژینوزا. مجله میکروب شناسی پزشکی ایران. 1401; 16 (6) :557-565

URL: http://ijmm.ir/article-1-1696-fa.html


1- گروه میکروب شناسی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران
2- گروه میکروب شناسی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران ، rabi-izadiamoli@yahoo.com
3- مرکز تحقیقات بیماری‌های عفونی و گرمسیری، پژوهشکده بهداشت، دانشگاه علوم پزشکی بابل، بابل، ایران
چکیده:   (2150 مشاهده)

زمینه و اهداف:  سودوموناس آئروژینوزا مقاوم به کارباپنم (CRPA) یکی از مهم ترین علل عفونت های شدید و پایدار است. مشارکت مکانیسم ‌های مختلف مقاومت به کارباپنم ‌ها و تشکیل بیوفیلم در میان مجموعه‌ای از جدایه ‌های حساس و غیر حساس به ایمی پنم سودوموناس آئروژینوزا مورد بررسی قرار گرفت.

مواد و روش کار:  در این مطالعه مقطعی، در مجموع ۱۱۷ جدایه سودوموناس آئروژینورا جمع آوری شد. حساسیت جدایه ها به انواع ترکیبات ضد میکروبی با روش دیسک دیفیوژن ارزیابی شد. برای شناسایی تولید کنندگان آلژینات از روش کاربازول استفاده شد. مالتی پلکس PCR برای تشخیص ژن های مقاومت و بیوفیلم انجام شد. سطح بیان mRNA افلاکس پمپ‌ ها با روش‌ های فنوتیپی و ژنوتیپی (Real-time PCR کمی) ارزیابی شد.

یافته ها:  بیشترین میزان مقاومت مربوط به سفتازیدیم، کلرامفنیکل، سفتریاکسون، تتراسایکلین و لووفلوکساسین بود. فنوتیپ MDR در ۸/۴% سویه ها مشاهده شد. فراوانی مقاومت به کارباپنم نیز ۲۴/۷% بود. تست کاربازول در ۵۳/۸% مثبت بود. به طور کلی ۶۲/۴% از جدایه ها قادر به تشکیل بیوفیلم بودند که ۲۸/۸% آن ها به کارباپنم مقاوم بودند. توزیع ژن algD و algU به ترتیب ۴۱/۸% و ۲۶/۵% بود. فراوانی ژن های کدگذاری شده باMBL  به شرح زیر بود: bla IMP (۶۲/۱%)، bla VIM (۳۱/۰%)، bla NDM (۶/۸%). سطوح نسبی mRNA، MexX، MexC، MexB و MexA در سویه ‌های  CRPAبا افلاکس پمپ فعال به ترتیب ۸۱/۸%، ۶۳/۶%، ۵۴/۴%، ۳۶/۴% بود. 

نتیجه‌گیری:  وجود مکانیسم ‌های مختلف مقاوم در سودوموناس آئروژینوزا می‌تواند باعث ایجاد مقاومت متقاطع آنتی ‌بیوتیکی شده، منجر به ظهور سویه‌ های مقاوم شود و درمان را دشوار کند. تولید بیوفیلم ارتباط مستقیمی با مقاومت آنتی بیوتیکی دارد. پمپ های افلاکس به طور فعال در سویه های مقاوم به کارباپنم بیان می شوند.

متن کامل [PDF 663 kb]   (570 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: باکتری شناسی پزشکی
دریافت: 1400/12/19 | پذیرش: 1401/4/3 | انتشار الکترونیک: 1401/6/18

فهرست منابع
1. Chaudhury N, Paul R, Misra RN, Chaudhuri SS, Mirza S, Sen S. Evaluating the trends of bloodstream infections by nonfermenting Gram negative Bacilli among the patients in a tertiary Care Hospital of western part of India and its antibiogram. Int J Curr Microbiol Appl Sci. 2019; 8(1):1149-62. [DOI:10.20546/ijcmas.2019.801.121]
2. Kunz Coyne AA-O, El Ghali AA-O, Holger DA-O, Rebold NA-O, Rybak MA-OX. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect Dis Ther. 2022; 11(2):661-82. [DOI:10.1007/s40121-022-00591-2] [PMID] [PMCID]
3. Rouhi S, Ramazanzadeh R. Prevalence of blaOxacillinase-23and blaOxacillinase-24/40-type Carbapenemases in Pseudomonas aeruginosa Species Isolated from Patients with Nosocomial and Non-nosocomial Infections in the West of Iran. Iran J Pathol. 2018;13(3).
4. Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens. 2022;11(3):300. [DOI:10.3390/pathogens11030300] [PMID] [PMCID]
5. Noori HG, Tadjrobehkar O, Moazamian E. Biofilm formation capacity of Pseudomonas aeruginosa is significantly enhanced by sub-inhibitory concentrations of Tomatidine. Gene Rep. 2022; 27:101570. [DOI:10.1016/j.genrep.2022.101570]
6. Ryder C, Byrd M, Wozniak DJ. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol. 2007;10(6):644-8. [DOI:10.1016/j.mib.2007.09.010] [PMID] [PMCID]
7. Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, et al. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol. 2012;14(8):1913-28. [DOI:10.1111/j.1462-2920.2011.02657.x] [PMID] [PMCID]
8. Pournajaf A, Razavi S, Irajian G, Ardebili A, Erfani Y, Solgi S, et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez Med. 2018;26(3):226-36.
9. Azizian K, Alikhani MY, Mashouf RY, Gholizadeh P, Noshak MA. Antibiotic resistance patterns and frequency of metallo-beta-lactamases in Klebsiella pneumoniae in Hamadan, Iran. J Contemp Clin Pract. 2019;5(1):10-7.
10. Weinstein MP. Performance standards for antimicrobial susceptibility testing: Clinical and Laboratory Standards Institute; 2021.
11. Dogonchi AA, Ghaemi EA, Ardebili A, Yazdansetad S, Pournajaf A. Metallo-β-lactamase-mediated resistance among clinical carbapenem-resistant Pseudomonas aeruginosa isolates in northern Iran: A potential threat to clinical therapeutics. Tzu Chi Med J. 2018;30 (2):90-6. [DOI:10.4103/tcmj.tcmj_101_17] [PMID] [PMCID]
12. Rodríguez-Martínez J-M, Poirel L, Nordmann P. Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(11):4783-8. [DOI:10.1128/AAC.00574-09] [PMID] [PMCID]
13. Goli HR, Nahaei MR, Rezaee MA, Hasani A, Kafil HS, Aghazadeh M, et al. Role of MexAB-OprM and MexXY-OprM efflux pumps and class 1 integrons in resistance to antibiotics in burn and Intensive Care Unit isolates of Pseudomonas aeruginosa. J Infect Public Health. 2018;11(3): 364-72. [DOI:10.1016/j.jiph.2017.09.016] [PMID]
14. Azimi L, Fallah F, Karimi A, Shirdoust M, Azimi T, Sedighi I, et al. Survey of various carbapenem-resistant mechanisms of Acinetobacter baumannii and Pseudomonas aeruginosa isolated from clinical samples in Iran. Iran J Basic Med Sci. 2020;23(11):1396.
15. Ghadaksaz A, Fooladi AAI, Hosseini HM, Amin M. The prevalence of some Pseudomonas virulence genes related to biofilm formation and alginate production among clinical isolates. J Appl Biomed. 2015;13(1):61-8. [DOI:10.1016/j.jab.2014.05.002]
16. Javiya VA, Ghatak SB, Patel KR, Patel JA. Antibiotic susceptibility patterns of Pseudomonas aeruginosa at a tertiary care hospital in Gujarat, India. Indian J Pharmacol. 2008;40(5):230. [DOI:10.4103/0253-7613.44156] [PMID] [PMCID]
17. Sader HS, Huband MD, Castanheira M, Flamm RK. Pseudomonas aeruginosa antimicrobial susceptibility results from four years (2012 to 2015) of the international network for optimal resistance monitoring program in the United States. Antimicrob Agents Chemother. 2017;61 (3):e02252-16. [DOI:10.1128/AAC.02252-16] [PMID] [PMCID]
18. Goli HR, Nahaei MR, Ahangarzadeh Rezaee M, Hasani A, Samadi Kafil H, Aghazadeh M. Emergence of colistin resistant Pseudomonas aeruginosa at Tabriz hospitals, Iran. Iran J Microbiol. 2016;8(1):62-9.
19. Sheikh AF, Shahin M, Shokoohizadeh L, Halaji M, Shahcheraghi F, Ghanbari F. Molecular epidemiology of colistin-resistant Pseudomonas aeruginosa producing NDM-1 from hospitalized patients in Iran. Iran J Basic Med Sci. 2019;22 (1): 38.
20. Armin S, Fallah F, Azimi L, Kafil HS, Ghazvini K, Hasanzadeh S, et al. Warning: spread of NDM-1 in two border towns of Iran. Cell Mol Biol. 2018; 64(10):125-9. [DOI:10.14715/cmb/2018.64.10.20] [PMID]
21. Gonçalves IR, Dantas RCC, Ferreira ML, Batistão DWdF, Gontijo-Filho PP, Ribas RM. Carbapenem-resistant Pseudomonas aeruginosa: association with virulence genes and biofilm formation. Braz J Microbiol. 2017;48(2):211-7. [DOI:10.1016/j.bjm.2016.11.004] [PMID] [PMCID]
22. Płókarz D, Czopowicz M, Bierowiec K, Rypuła K. Virulence Genes as Markers for Pseudomonas aeruginosa Biofilm Formation in Dogs and Cats. Animals. 2022;12(4):422. [DOI:10.3390/ani12040422] [PMID] [PMCID]
23. Gajdács M, Baráth Z, Kárpáti K, Szabó D, Usai D, Zanetti S, et al. No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiot. 2021;10(9):1134. [DOI:10.3390/antibiotics10091134] [PMID] [PMCID]
24. Sachdeva R, Sharma B, Sharma R. Evaluation of different phenotypic tests for detection of metallo-β-lactamases in imipenem-resistant Pseudomonas aeruginosa. J lab physicians. 2017; 9(04):249-53. [DOI:10.4103/JLP.JLP_118_16] [PMID] [PMCID]
25. Galani I, Rekatsina PD, Hatzaki D, Plachouras D, Souli M, Giamarellou H. Evaluation of different laboratory tests for the detection of metallo-β-lactamase production in Enterobacteriaceae. J Antimicrob Chemother. 2008;61(3):548-53. [DOI:10.1093/jac/dkm535] [PMID]
26. Ranjan S, Banashankari GS, Babu PRS. Evaluation of phenotypic tests and screening markers for detection of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa: A prospective study. Med J DY Patil Vidyapeeth. 2015;8(5):599. [DOI:10.4103/0975-2870.164977]
27. Šuto S, Bedenić B, Likić S, Kibel S, Anušić M, Tičić V, et al. Diffusion of OXA-48 carbapenemase among urinary isolates of Klebsiella pneumoniae in non-hospitalized elderly patients. BMC Microbiol. 2022;22(1):1-15. [DOI:10.1186/s12866-022-02443-y] [PMID] [PMCID]
28. Cherak Z, Loucif L, Moussi A, Bendjama E, Benbouza A, Rolain J-M. Emergence of Metallo-β-Lactamases and OXA-48 carbapenemase producing Gram-negative bacteria in hospital wastewater in Algeria: A potential dissemination pathway into the environment. Microbial Drug Resistance. 2022;28(1):23-30. [DOI:10.1089/mdr.2020.0617] [PMID]
29. Gutiérrez O, Juan C, Cercenado E, Navarro F, Bouza E, Coll P, et al. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother. 2007;51(12):4329-35. [DOI:10.1128/AAC.00810-07] [PMID] [PMCID]
30. Pourakbari B, Yaslianifard S, Yaslianifard S, Mahmoudi S, Keshavarz-Valian S, Mamishi S. Evaluation of efflux pumps gene expression in resistant Pseudomonas aeruginosa isolates in an Iranian referral hospital. Iran J Microbiol. 2016;8 (4):249.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله میکروب شناسی پزشکی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق   ناشر: موسسه فرنام

© 2024 CC BY-NC 4.0 | Iranian Journal of Medical Microbiology

Designed & Developed by : Yektaweb Publishr: Farname Inc.